7,762 research outputs found

    Thermal expansion mismatch and plasticity in thermal barrier coating

    Get PDF
    The basic objective of this investigation is the quantitative determination of stress states in a model thermal barrier coating (TBC) as it cools in the air to 600 C from an assumed stress-free state at 700 C. This model is intended to represent a thin plasma-sprayed zirconia-yttria ceramic layer with a nickel chromium-aluminum-yttrium bond coat on a cylindrical substrate made of nickel-based superalloys typically found in gas turbines

    A study on thermal barrier coatings including thermal expansion mismatch and bond coat oxidation

    Get PDF
    The present investigation deals with a plasma-sprayed thermal barrier coating (TBC) intended for high temperature applications to advanced gas turbine blades. Typically, this type of coating system consists of a zirconia-yttria ceramic layer with a nickel-chromium-aluminum bond coat on a superalloy substrate. The problem on hand is a complex one due to the fact that bond coat oxidation and thermal mismatch occur in the TBC. Cracking in the TBC has also been experimentally illustrated. A clearer understanding of the mechanical behavior of the TBC is investigated. The stress states in a model thermal barrier coating as it cools down in air is studied. The powerful finite element method was utilized to model a coating cylindrical specimen. Four successively refined finite element models were developed. Some results obtained using the first two models have been reported previously. The major accomplishment is the successful development of an elastic TBC finite element model known as TBCG with interface geometry between the ceramic layer and the bond coat. An equally important milestone is the near-completion of the new elastic-plastic TBC finite element model called TBCGEP which yielded initial results. Representative results are presented

    An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    Get PDF
    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control

    Multi-Mission Power Analysis Tool (MMPAT) Version 3

    Get PDF
    The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture

    Graph Annotations in Modeling Complex Network Topologies

    Full text link
    The coarsest approximation of the structure of a complex network, such as the Internet, is a simple undirected unweighted graph. This approximation, however, loses too much detail. In reality, objects represented by vertices and edges in such a graph possess some non-trivial internal structure that varies across and differentiates among distinct types of links or nodes. In this work, we abstract such additional information as network annotations. We introduce a network topology modeling framework that treats annotations as an extended correlation profile of a network. Assuming we have this profile measured for a given network, we present an algorithm to rescale it in order to construct networks of varying size that still reproduce the original measured annotation profile. Using this methodology, we accurately capture the network properties essential for realistic simulations of network applications and protocols, or any other simulations involving complex network topologies, including modeling and simulation of network evolution. We apply our approach to the Autonomous System (AS) topology of the Internet annotated with business relationships between ASs. This topology captures the large-scale structure of the Internet. In depth understanding of this structure and tools to model it are cornerstones of research on future Internet architectures and designs. We find that our techniques are able to accurately capture the structure of annotation correlations within this topology, thus reproducing a number of its important properties in synthetically-generated random graphs

    Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Get PDF
    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition

    Prospective Electrocardiogram-Gated Delayed Enhanced Multidetector Computed Tomography Accurately Quantifies Infarct Size and Reduces Radiation Exposure

    Get PDF
    ObjectivesThis study sought to determine whether low-dose, prospective electrocardiogram (ECG)-gated delayed contrast-enhanced multidetector computed tomography (DCE-MDCT) can accurately delineate the extent of myocardial infarction (MI) compared with retrospective ECG-gated DCE-MDCT.BackgroundFor defining the location and extent of MI, DCE-MDCT compares well with delayed enhanced cardiac magnetic resonance. However, the addition of a delayed scan requires additional radiation exposure to patients. MDCT protocols using prospective ECG gating can substantially reduce effective radiation dose exposure, but these protocols have not yet been applied to infarct imaging.MethodsTen porcine models of acute MI were imaged 10 days after MI using prospective and retrospective ECG-gated DCE-MDCT (64-slice) 10 min after a 90-ml contrast bolus. The MDCT images were analyzed using a semiautomated computed tomography density (CTD) threshold technique. Infarct size, signal-to-noise (SNR) ratios, contrast-to-noise (CNR) ratios, and image quality metrics were compared between the 2 ECG-gating techniques.ResultsInfarct volume measurements obtained by both methods were strongly correlated (R = 0.93, p < 0.001) and in good agreement (mean difference: −0.46 ml ± 4.00%). Compared with retrospective ECG gating, estimated radiation dosages were markedly reduced with prospective ECG gating (930.1 ± 62.2 mGy×cm vs. 42.4 ± 2.3 mGy×cm, p < 0.001). The SNR and CNR of infarcted myocardium were somewhat lower for prospective gated images (22.0 ± 11.0 vs. 16.3 ± 7.8 and 8.8 ± 5.3 vs. 7.0 ± 3.9, respectively; p < 0.001). However, all examinations using prospective gating protocol achieved sufficient diagnostic image quality for the assessment of MI.ConclusionsProspective ECG-gated DCE-MDCT accurately assesses infarct size compared with retrospective ECG-gated DCE-MDCT imaging. Although infarct SNR and CNR were significantly higher for the retrospective gated protocol, prospective ECG-gated DCE-MDCT provides high-resolution imaging of MI, while substantially lowering the radiation dose
    corecore