170 research outputs found

    Mitochondrial trafficking in healthy and injured neurons

    Get PDF
    Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of increased need such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by mitochondrial transport to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunctions.The demands for mitochondria differ between developing and mature neurons, and separate mitochondrial recruitment signals have been identified in each case. In the first aim, we examined how mitochondrial dynamics are affected by the development of synaptic connections in cortical neurons. We revealed reduced mitochondrial movement and elongated morphology in mature neurons which probably serve to optimize mitochondrial contact with synaptic sites.Synapses require mitochondria to supply ATP and regulate local [Ca2+]i for neurotransmission. The second aim investigated mitochondrial trafficking patterns relative to synaptic sites on axons and dendrites. We demonstrated that synapses are targets for long-term mitochondrial localization and dynamic recruitment of moving mitochondria, and that trafficking patterns are influenced by changes in synaptic activity. We also found that mitochondrial movement in dendrites is more severely impaired by neurotoxic glutamate and zinc exposures than in axons. These findings suggest a mechanism for postsynaptic dysfunction and dendritic degeneration in excitotoxicity.The third aim examined impaired mitochondrial transport as an early pathogenic mechanism in Huntington's disease. Recent studies indicate that aggregates composed of mutant huntingtin fragments hinder axonal transport by sequestering wildtype huntingtin, cytoskeletal components and molecular motors. Our studies in cortical neurons demonstrated reduced mitochondrial trafficking specifically to sites of aggregates and impeded passage of moving mitochondria by aggregates resulting in discrete regions of mitochondrial accumulation and immobilization.In summary, this dissertation provides new insight into our understanding of mitochondrial trafficking, morphology and distribution in cortical neurons that are developing, synaptically mature, acutely injured, and diseased. We conclude that mitochondrial movement is dynamic in healthy neurons and that injured neurons exhibit different manifestations of impaired movement

    Enteroendocrine cells express functional Toll-like receptors

    Get PDF
    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-κB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-β. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivo glioblastoma models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decades, in spite of intensive search, no significant increase in the survival of patients with glioblastoma has been obtained. The role of the blood-brain barrier (BBB) and especially the activity of efflux pumps belonging to the ATP Binding Cassette (ABC) family may, in part, explain this defect.</p> <p>Methods</p> <p>The <it>in-vitro </it>activities of JAI-51 on cell proliferation were assessed by various experimental approaches in four human and a murine glioblastoma cell lines. Using drug exclusion assays and flow-cytometry, potential inhibitory effects of JAI-51 on P-gp and BCRP were evaluated in sensitive or resistant cell lines. JAI-51 activity on <it>in-vitro </it>microtubule polymerization was assessed by tubulin polymerization assay and direct binding measurements by analytical ultracentrifugation. Finally, a model of C57BL/6 mice bearing subcutaneous GL26 glioblastoma xenografts was used to assess the activity of the title compound <it>in vivo</it>. An HPLC method was designed to detect JAI-51 in the brain and other target organs of the treated animals, as well as in the tumours.</p> <p>Results</p> <p>In the four human and the murine glioblastoma cell lines tested, 10 μM JAI-51 inhibited proliferation and blocked cells in the M phase of the cell cycle, via its activity as a microtubule depolymerising agent. This ligand binds to tubulin with an association constant of 2 × 10<sup>5 </sup>M<sup>-1</sup>, overlapping the colchicine binding site. JAI-51 also inhibited the activity of P-gp and BCRP, without being a substrate of these efflux pumps. These <it>in vitro </it>studies were reinforced by our <it>in vivo </it>investigations of C57BL/6 mice bearing GL26 glioblastoma xenografts, in which JAI-51 induced a delay in tumour onset and a tumour growth inhibition, following intraperitoneal administration of 96 mg/kg once a week. In accordance with these results, JAI-51 was detected by HPLC in the tumours of the treated animals. Moreover, JAI-51 was detected in the brain, showing that the molecule is also able to cross the BBB.</p> <p>Conclusion</p> <p>These <it>in vitro </it>and <it>in vivo </it>data suggest that JAI-51 could be a good candidate for a new treatment of tumours of the CNS. Further investigations are in progress to associate the title compound chemotherapy to radiotherapy in a rat model.</p

    Normal Human Pluripotent Stem Cell Lines Exhibit Pervasive Mosaic Aneuploidy

    Get PDF
    Human pluripotent stem cell (hPSC) lines have been considered to be homogeneously euploid. Here we report that normal hPSC – including induced pluripotent - lines are karyotypic mosaics of euploid cells intermixed with many cells showing non-clonal aneuploidies as identified by chromosome counting, spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) of interphase/non-mitotic cells. This mosaic aneuploidy resembles that observed in progenitor cells of the developing brain and preimplantation embryos, suggesting that it is a normal, rather than pathological, feature of stem cell lines. The karyotypic heterogeneity generated by mosaic aneuploidy may contribute to the reported functional and phenotypic heterogeneity of hPSCs lines, as well as their therapeutic efficacy and safety following transplantation

    Interactions between Plasma Levels of 25-Hydroxyvitamin D, Insulin-Like Growth Factor (IGF)-1 and C-Peptide with Risk of Colorectal Cancer

    Get PDF
    Background: Vitamin D status and levels of insulin-like growth factor (IGF)-1 and C-peptide have been implicated in colorectal carcinogenesis. However, in contrast to vitamin D IGF-1 is not an easily modifiable risk factor. Methods: Combining data from the Health Professionals Follow up Study (HPFS) and the Nurses' Health Study cohort (NHS) additive and multiplicative interactions were examined between plasma 25-hydroxyvitamin D (25(OH)D) and IGF-1, IGFBP-3 as well as C-peptide levels in 499 cases and 992 matched controls. For the various analytes, being high or low was based on being either above (or equal) or below the medians, respectively. Results: Compared to participants with high 25(OH)D and low IGF-1/IGFBP-3 ratio (reference group), participants with a high IGF-1/IGFBP-3 ratio were at elevated risk of colorectal cancer when 25(OH)D was low (odds ratio (OR): 2.05 (95% CI: 1.43 to 2.92), but not when 25(OH)D was high (OR:1.20 (95% CI: 0.84 to 1.71, p(interaction): additive = 0.06, multiplicative = 0.25). Similarly, compared to participants with high 25(OH)D and low molar IGF-1/IGFBP-3 ratio and low C-peptide levels (reference group), participants with a combination of either high IGF-1/IGFBP-3 ratio or high C-peptide were at elevated risk for colorectal cancer when 25(OH)D was low (OR = 1.90, 95% CI: 1.22 to 2.94) but not when 25(OH)D was high (OR = 1.15, 95% CI: 0.74 to 1.77, p(interaction): additive = 0.004; multiplicative = 0.04). Conclusion: The results from this study suggest that improving vitamin D status may help lower risk of colorectal cancer associated with higher IGF-1/IGFBP-3 ratio or C-peptide levels

    Receptor Sorting within Endosomal Trafficking Pathway Is Facilitated by Dynamic Actin Filaments

    Get PDF
    Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs

    PPARα Deficiency in Inflammatory Cells Suppresses Tumor Growth

    Get PDF
    Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)α is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPARα deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and granulocyte depletion show that PPARα expressing granulocytes are necessary for tumor growth. Neutralization of thrombospondin-1 restores tumor growth in PPARα-deficient mice. These findings suggest that the absence of PPARα activity renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating stromal processes, such as angiogenesis

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC
    corecore