192 research outputs found

    Emission Characteristics of an Axially Staged Sector Combustor for a Small Core High OPR Subsonic Aircraft Engine

    Get PDF
    This paper presents the nitrogen oxides, carbon monoxide, and particulate matter emissions of a single sector axially staged combustor sector designed and fabricated by United Technologies Research Center (UTRC) in partnership with NASA under a compact low-emissions combustor contract supported by the NASA Advanced Air Transport Technology (AATT) N+3 project. The test was conducted at NASA Glenn Research Center's CE-5 combustion test facility. The facility provided inlet air temperatures up to 922 K and pressures up to 19.0 bar. The combustor design concept, called Axially Controlled Stoichiometry (ACS), was developed by Pratt & Whitney (P&W) under NASA's Environmentally Responsible Aviation (ERA) program for an N+2 combustor for use in twin-aisle subsonic aircraft engines. Under the N+3 project the ACS combustor was scaled-down for application to small-core N+3 engines for use in single-aisle aircraft. The results show that the NOx and CO emissions characteristics are similar in both the N+2 and N+3 applications. The non-volatile particulate matter (nvPM) emissions trends are similar to CO emissions with an exception at high fuel-air ratio, as inlet air temperature and pressure conditions change from taxi to approach. Three NOx correlation equations are generated to describe theNOx emissions of this combustor. The percentage landing and takeoff (LTO) NOx reduction of the N+3 ACS combustor is between 82% and 89% relative to the ICAO CAEP/6 standard, which meets the NASA N+3 goal of exceeding 80% LTO NOx reduction

    Comparison of Combustion Dynamic Characteristics of Two Advanced Multi-Cup Fuel Injectors

    Get PDF
    An experimental investigation of the combustion dynamic characteristics of two advanced multi-cup lean direct injectors (LDI) under simulated gas turbine combustor conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flame tube combustion chamber and study the effects of injector flow number on combustion dynamics. The injectors are known as Three-zone Injectors one and two or 3ZI-1 and 3ZI-2, respectively. The injectors were experimentally evaluated at inlet pressures up to 1.724 MPa, non-vitiated air temperatures up to 828K, and adiabatic flame temperatures up to 1975K. Dynamic pressure measurements were taken upstream of the injectors and in the combustion zone. The combustion dynamic behavior of the two injectors was measured over a range of inlet pressures, inlet temperatures, fuel air ratios, and fuel flow splits

    Active Control of High-Frequency Combustor Instability Demonstrated

    Get PDF
    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities

    Experimental Combustion Dynamics Behavior of a Multi-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    Get PDF
    An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72

    Piston ring friction

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERINGBibliography: leaf 68.by Clarence Teh-Ching Chang.M.S

    An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    Get PDF
    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control

    NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Get PDF
    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure

    Fuel and Combustor Concerns for Future Commercial Combustors

    Get PDF
    Civil aircraft combustor designs will move from rich-burn to lean-burn due to the latter's advantage in low NOx and nvPM emissions. However, the operating range of lean-burn is narrower, requiring premium mixing performance from the fuel injectors. As the OPR increases, the corresponding combustor inlet temperature increase can benefit greatly with fuel composition improvements. Hydro-treatment can improve coking resistance, allowing finer fuel injection orifices to speed up mixing. Selective cetane number control across the fuel carbon-number distribution may allow delayed ignition at high power while maintaining low-power ignition characteristics

    NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Get PDF
    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio () to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure
    corecore