5,296 research outputs found

    Bioinformatic discovery of microRNA precursors from human ESTs and introns

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) function in many physiological processes, and their discovery is beneficial for further studying their physiological functions. However, many of the miRNAs predicted from genomic sequences have not been experimentally validated to be authentic expressed RNA transcripts, thereby decreasing the reliability of miRNA discovery. To overcome this problem, we examined expressed transcripts – ESTs and intronic sequences – to identify novel miRNAs as well as their target genes. RESULTS: To facilitate our approach, we developed our scanning method using criteria based on the features of 207 known human pre-miRNAs to discriminate miRNAs from random sequences. We identified 208 candidate hairpins in human ESTs and human reference gene intronic sequences, 52 of which are known pre-miRNAs. The discovery pipeline performance was further assessed using 130 newly updated pre-miRNA and randomly selected sequences. We achieved sensitivity of 85% (110/130) and overall specificity of 49.7% using this method. Because miRNAs are evolutionarily conserved regulators of gene expression, it is expected that their host genes and target genes should have respective phylogenetic orthologs. Our results confirmed that, in certain mammals, the host genes carrying the same miRNAs are orthologs, as previously reported. Moreover, this observation is also the case for some of the miRNA target genes. CONCLUSION: We have predicted 208 human pre-miRNA candidates and over 10,000 putative human target genes. Using sequence information from ESTs and introns ensures that the predicted pre-miRNA candidates are expressed and the combined expression transcription information from ESTs and introns makes our prediction results more decisive with regard to expressed pre-miRNAs

    App Review Analytics Of Free Games Listed On Google Play

    Get PDF
    Smartphones have become popular in recent years; in turn, the number of application developers and publishers has grown rapidly. To understand users’ app preferences, many platforms such as Google Play provide different mechanism that allows users to rank apps. However, more detailed insights on user’s feelings, experiences, critiques, suggestions, or preferences are missing due to a lack of additional written comments. This research attempts to investigate the review analytics of Android games listed on Google Play using a proposed text analytic approach to extract all user reviews from game apps in Chinese. A total of 207,048 reviews of 4,268 free games from February to March 2013 are extracted and analyzed according to various metrics including game type and game attribute. The findings indicate there is high dependency between users’ gender and game type, males and females have differing opinions on game attributes. In particular, users of different game types prefer different game attributes. The results reveal product usage insights, as well as best practices for developers

    A Model for Selecting Technologies in New Product Development

    Get PDF
    Due to fast changing technologies, shortening product lifecycles, and increased global competition, companies today often need to develop new products continuously and faster. Successful introduction and acceleration of new product development (NPD) is important to obtain competitive advantage for companies. Since technology selection for NPD involves complex decision makings that are critical to the profitability and growth of a company, the selection of the most appropriate technology for a new product requires the use of a robust decision-making framework capable of evaluating several technology candidates based on multiple criteria. This paper presents an integrated model that adopts interpretive structural modeling (ISM) and fuzzy analytic network process (FANP) to evaluate various different available technologies for NPD. The ISM is used to understand the interrelationships among the factors, and the FANP is to facilitate the evaluation process of decision makers under an uncertain environment with interrelated factors. A case study of a flat panel manufacturer is performed to examine the practicality of the proposed model. The results show that the model can be applied for group decision making on the available technology evaluation and selection in new product development

    Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment

    Get PDF
    Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications

    Pathophysiology of Neuropathic Pain in Type 2 Diabetes: Skin denervation and contact heat–evoked potentials

    Get PDF
    OBJECTIVE: Neuropathic pain due to small-fiber sensory neuropathy in type 2 diabetes can be diagnosed by skin biopsy with quantification of intra- epidermal nerve fiber ( IENF) density. There is, however, a lack of noninvasive physiological assessment. Contact heat-evoked potential ( CHEP ) is a newly developed approach to record cerebral responses of A fiber- mediated thermonociceptive stimuli. We investigated the diagnostic role of CHEP. RESEARCH DESIGN AND METHODS: From 2006 to 2009, there were 32 type 2 diabetic patients (20 males and 12 females, aged 51.63 10.93 years) with skin denervation and neuropathic pain. CHEPs were recorded with heat stimulations at the distal leg, where skin biopsy was performed. RESULTS: CHEP amplitude was reduced in patients compared with age- and sex-matched control subjects (14.8 15.6 vs. 33.7 10.1 V, P < 0.001). Abnormal CHEP patterns ( reduced amplitude or prolonged latency) were noted in 81.3 % of these patients. The CHEP amplitude was the most significant parameter correlated with IENF density (P = 0. 003) and pain perception to contact heat stimuli (P = 0.019) on multiple linear regression models. An excitability index was derived by calculating the ratio of the CHEP amplitude over the IENF density. This excitability index was higher in diabetic patients than in control subjects (P = 0.023), indicating enhanced brain activities in neuropathic pain. Among different neuropathic pain symptoms, the subgroup with evoked pain had higher CHEP amplitudes than the subgroup without evoked pain (P = 0.011). CONCLUSIONS: CHEP offers a noninvasive approach to evaluate the degeneration of thermonociceptive nerves in diabetic neuropathy by providing physiological correlates of skin denervation and neuropathic pain

    Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    Get PDF
    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection.National Science Council of Taiwan (100-2321-B-002-007)National Science Council of Taiwan (100-2320-B-002-083-MY3)Taiwan. Ministry of Science and Technology (104-2300-B-002-019-MY3)National Taiwan University. College of Medicine (Translational Medicine Project)National Taiwan University Hospital (101C101-201

    Case Report: Ribociclib-induced phototoxicity presented as dyschromia with subsequent bullae formation

    Get PDF
    Ribociclib, a cyclin-dependent kinase 4/6 inhibitor, is a novel targeted therapy for advanced-stage breast cancer. Although ribociclib-induced cutaneous side effects have been previously noted, they have not been well documented. Herein, we present a case of ribociclib-induced phototoxicity, which manifested as dyschromia over sun-exposed forearms and neck initially and as bullae formation subsequently. A 71-year-old woman with metastatic breast cancer developed dyschromia after daily treatment with ribociclib (600 mg) for 7 months. Skin biopsy of the pigmented lesion revealed interface dermatitis with melanin incontinence and dyskeratotic cells and ballooning keratinocytes with loss of melanocytes in the basal layer. Further, clefting at the basal layer of epidermis was noted in a more hyperpigmented field. Fontana–Masson staining revealed melanophages in the dermis. Human Melanoma Black-45 staining revealed decreased melanocyte numbers in the epidermis above the cleft. Immunohistochemical analyses revealed activated CD1a+ epidermal Langerhans cells and infiltrating CD4+ and CD8+ T cells in the epidermis and dermis, thereby indicating type IV hypersensitivity that was associated with damage to keratinocytes and melanocytes. To prevent progression of bullous dermatitis, we advised the patient to discontinue ribociclib and prescribed oral and topical prednisolone. Due to the risk of phototoxicity, we educated the patient on sun-protection strategies. The patient’s skin lesions subsided during the 2 months of treatment. Phototoxicity with dyschromia is a rare but significant ribociclib-induced cutaneous side effect. Early diagnosis, rapid ribociclib withdrawal, protection from sunlight, and prompt treatment are critical for preventing subsequent severe bullous dermatosis

    Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    Get PDF
    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future
    corecore