104 research outputs found

    Clofazimine Inhibits Human Kv1.3 Potassium Channel by Perturbing Calcium Oscillation in T Lymphocytes

    Get PDF
    The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders

    Development time and new product sales: A contingency analysis of product innovativeness and price

    Get PDF
    Opposing theories and conflicting empirical results with regard to the effect of development time on new product sales suggest the need for a contingency analysis into factors affecting this relationship. This study uses a unique combination of accounting and perceptual data from 129 product development projects to test the combined contingency effect of product innovativeness and new product price on the relationship between development time and new product sales. The results show that for radically new products with short development times, price has no effect on new product sales. When the development time is long, price has a negative effect on the sales of radical new products. The findings additionally show that price has no effect on sales for incremental new products with short development times and a negative effect for incremental new products with long development times. Together, these findings shed new light on the relationship between development time and new product sales

    Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transmission of <it>Plasmodium falciparum </it>generally decreases with increasing elevation, in part because lower temperature slows the development of both parasites and mosquitoes. However, other aspects of the terrain, such as the shape of the land, may affect habitat suitability for <it>Anopheles </it>breeding and thus risk of malaria transmission. Understanding these local topographic effects may permit prediction of regions at high risk of malaria within the highlands at small spatial scales.</p> <p>Methods</p> <p>Hydrologic modelling techniques were adapted to predict the flow of water across the landscape surrounding households in two communities in the western Kenyan highlands. These surface analyses were used to generate indices describing predicted water accumulation in regions surrounding the study area. Households with and without malaria were compared for their proximity to regions of high and low predicted wetness. Predicted wetness and elevation variables were entered into bivariate and multivariate regression models to examine whether significant associations with malaria were observable at small spatial scales.</p> <p>Results</p> <p>On average, malaria case households (n = 423) were located 280 m closer to regions with very high wetness indices than non-malaria "control" households (n = 895) (t = 10.35, p < 0.0001). Distance to high wetness indices remained an independent predictor of risk after controlling for household elevation in multivariate regression (OR = 0.93 [95% confidence interval = 0.89–0.96] for a 100 m increase in distance). For every 10 m increase in household elevation, there was a 12% decrease in the odds of the house having a malaria case (OR = 0.88 [0.85–0.90]). However, after controlling for distance to regions of high predicted wetness and the community in which the house was located, this reduction in malaria risk was not statistically significant (OR = 0.98 [0.94–1.03]).</p> <p>Conclusion</p> <p>Proximity to terrain with high predicted water accumulation was significantly and consistently associated with increased household-level malaria incidence, even at small spatial scales with little variation in elevation variables. These results suggest that high wetness indices are not merely proxies for valley bottoms, and hydrologic flow models may prove valuable for predicting areas of high malaria risk in highland regions. Application in areas where malaria surveillance is limited could identify households at higher risk and help focus interventions.</p

    The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    The Concise Guide to PHARMACOLOGY 2015/16:Enzymes

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13354/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    The Concise Guide to PHARMACOLOGY 2015/16:Transporters

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13355/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    The Concise Guide to PHARMACOLOGY 2015/16:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    Association of child maltreatment with South African adults’ wages:Evidence from the Cape area panel study

    Get PDF
    Child maltreatment is a prevalent public health problem in both developed and developing countries. While many studies have investigated the relationship between violence against children and health of the victims, little is known about the long term economic consequences of child maltreatment, especially in developing countries. Using data from the Cape Area Panel Study, this paper applies Heckman selection models to investigate the relationship between childhood maltreatment and young adults’ wages in South Africa. The results show that, on average, any experience of physical or emotional abuse during childhood is associated with a later 12% loss of young adults’ wages. In addition, the correlation between physical abuse and economic consequence (14%) is more significant than the relationship between emotional abuse and wages (8%) of young adults; and the higher the frequency of maltreatment, the greater the associations with wages. With respect to gender differences, wage loss due to the experience of childhood maltreatment is larger for females than males. Specifically, males’ wages are more sensitive to childhood emotional abuse, while females’ wages are more likely to be affected by childhood physical abuse. These results emphasize the importance of prioritizing investments in prevention and intervention programs to reduce the prevalence of child maltreatment and to help victims better overcome the long-term negative effect
    • …
    corecore