18 research outputs found

    Characterizing the metabolic phenotype of intestinal villus blunting in Zambian children with severe acute malnutrition and persistent diarrhea

    Get PDF
    Background: Environmental enteric dysfunction (EED) is widespread throughout the tropics and in children is associated with stunting and other adverse health outcomes. One of the hallmarks of EED is villus damage. In children with severe acute malnutrition (SAM) the severity of enteropathy is greater and short term mortality is high, but the metabolic consequences of enteropathy are unknown. Here, we characterize the urinary metabolic alterations associated with villus health, classic enteropathy biomarkers and anthropometric measurements in severely malnourished children in Zambia. Methods/Principal findings: We analysed 20 hospitalised children with acute malnutrition aged 6 to 23 months in Zambia. Small intestinal biopsies were assessed histologically (n = 15), anthropometric and gut function measurements were collected and the metabolic phenotypes were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy. Endoscopy could not be performed on community controls children. Growth parameters were inversely correlated with enteropathy biomarkers (p = 0.011) and parameters of villus health were inversely correlated with translocation and permeability biomarkers (p = 0.000 and p = 0.015). Shorter villus height was associated with reduced abundance of metabolites related to gut microbial metabolism, energy and muscle metabolism (p = 0.034). Villus blunting was also related to increased sucrose excretion (p = 0.013). Conclusions/Significance: Intestinal villus blunting is associated with several metabolic perturbations in hospitalized children with severe undernutrition. Such alterations include altered muscle metabolism, reinforcing the link between EED and growth faltering, and a disruption in the biochemical exchange between the gut microbiota and host. These findings extend our understanding on the downstream consequences of villus blunting and provide novel non-invasive biomarkers of enteropathy dysfunction. The major limitations of this study are the lack of comparative control group and gut microbiota characterization

    Glucagon-like Peptide 2 Concentrations Vary in Zambian Children During Diarrhoea, in Malnutrition and Seasonally.

    Get PDF
    OBJECTIVES: Glucagon-like peptide 2 (GLP-2) is a 33 amino acid peptide hormone released from enteroendocrine L-cells following nutrient ingestion. It has been shown to exert trophic effects on the gut. We set out to measure GLP-2 concentrations in blood in children with diarrhoea and malnutrition. METHODS: GLP-2 levels were measured in blood samples collected from 5 different groups of children (n = 324) at different time points: those with acute diarrhoea, during illness and 3 weeks after recovery; persistent diarrhoea and severe acute malnutrition; controls contemporaneous for diarrhoea; stunted children from the community; and controls contemporaneous for the stunted children. Stool biomarkers and pathogen analysis were carried out on the children with stunting. RESULTS: GLP-2 concentrations were higher during acute diarrhoea (median 3.1 ng/mL, interquartile range 2.1, 4.4) than on recovery (median 1.8, interquartile range 1.4, 3.1; P = 0.001), but were not elevated in children with persistent diarrhoea and severe acute malnutrition. In stunted children, there was a progressive decline in GLP-2 levels from 3.2 ng/mL (1.9, 4.9) to 1.0 (0.0, 2.0; P < 0.001) as the children became more stunted. Measures of seasonality (rainfall, temperature,Food Price Index, and Shiga toxin-producing Escherichia coli) were found to be significantly associated with GLP-2 concentrations in multivariable analysis. We also found a correlation between stool inflammatory biomarkers and GLP-2. CONCLUSIONS: In diarrhoea, GLP-2 levels increased in acute but not persistent diarrhoea. Malnutrition was associated with reduced concentrations. GLP-2 displayed seasonal variation consistent with variations in nutrient availability

    Inflammation and epithelial repair predict mortality, hospital readmission, and growth recovery in complicated severe acute malnutrition.

    Get PDF
    Severe acute malnutrition (SAM) is the most high-risk form of undernutrition, particularly when children require hospitalization for complications. Complicated SAM is a multisystem disease with high inpatient and postdischarge mortality, especially in children with comorbidities such as HIV; however, the underlying pathogenesis of complicated SAM is poorly understood. Targeted multiplex biomarker analysis in children hospitalized with SAM (n = 264) was conducted on plasma samples, and inflammatory markers were assessed on stool samples taken at recruitment, discharge, and 12 to 24 and 48 weeks after discharge from three hospitals in Zimbabwe and Zambia. Compared with adequately nourished controls (n = 173), we found that at baseline, complicated SAM was characterized by systemic, endothelial, and intestinal inflammation, which was exacerbated by HIV infection. This persisted over 48 weeks despite nutritional recovery and was associated with children's outcomes. Baseline plasma concentrations of vascular endothelial growth factor, glucagon-like peptide-2, and intestinal fatty acid-binding protein were independently associated with lower mortality or hospital readmission over the following 48 weeks. Following principal components analysis of baseline biomarkers, higher scores of a component representing growth factors was associated with greater weight-for-height z score recovery and lower mortality or hospital readmission over the 48 weeks. Conversely, components representing higher gut and systemic inflammation were associated with higher mortality or hospital readmission. These findings highlight the interplay between inflammation, which damages tissues, and growth factors, which mediate endothelial and epithelial regeneration, and support further studies investigating interventions to reduce inflammation and promote epithelial repair as an approach to reducing mortality and improving nutritional recovery

    Gene expression profiles compared in environmental and malnutrition enteropathy in Zambian children and adults

    Get PDF
    Background:: Environmental enteropathy (EE) contributes to growth failure in millions of children worldwide, but its relationship to clinical malnutrition has not been elucidated. We used RNA sequencing to compare duodenal biopsies from adults and children with EE, and from children with severe acute malnutrition (SAM), to define key features of these malnutrition-related enteropathies. Methods:: RNA was extracted and sequenced from biopsies of children with SAM in hospital (n=27), children with non-responsive stunting in the community (n=30), and adults living in the same community (n=37) using an identical sequencing and analysis pipeline. Two biopsies each were profiled and differentially expressed genes (DEGs) were computed from the comparisons of the three groups. DEG lists from these comparisons were then subjected to analysis with CompBio software to assemble a holistic view of the biological landscape and IPA software to interrogate canonical pathways. Findings:: Dysregulation was identified in goblet cell/mucin production and xenobiotic metabolism/detoxification for both cohorts of children, versus adults. Within the SAM cohort, substantially greater induction of immune response and barrier function, including NADPH oxidases was noted, concordant with broadly reduced expression of genes associated with the brush border and intestinal structure/transport/absorption. Interestingly, down regulation of genes associated with the hypothalamic-pituitary-adrenal axis was selectively observed within the cohort of children with stunting. Interpretation:: Gene expression profiles in environmental enteropathy and severe acute malnutrition have similarities, but SAM has several distinct transcriptional features. The intestinal capacity to metabolise drugs and toxins in malnourished children requires further study. Funding:: Bill &amp; Melinda Gates Foundation (OPP1066118

    Transcriptomic analysis of enteropathy in Zambian children with severe acute malnutrition.

    Get PDF
    BACKGROUND: Children with severe acute malnutrition (SAM), with or without diarrhoea, often have enteropathy, but there are few molecular data to guide development of new therapies. We set out to determine whether SAM enteropathy is characterised by specific transcriptional changes which might improve understanding or help identify new treatments. METHODS: We collected intestinal biopsies from children with SAM and persistent diarrhoea. mRNA was extracted from biopsies, sequenced, and subjected to a progressive set of complementary analytical approaches: NOIseq, Gene Set Enrichment Analysis (GSEA), and correlation analysis of phenotypic data with gene expression. FINDINGS: Transcriptomic profiles were generated for biopsy sets from 27 children of both sexes, under 2 years of age, of whom one-third were HIV-infected. NOIseq analysis, constructed from phenotypic group extremes, revealed 66 differentially expressed genes (DEGs) out of 21,386 mapped to the reference genome. These DEGs include genes for mucins and mucus integrity, antimicrobial defence, nutrient absorption, C-X-C chemokines, proteases and anti-proteases. Phenotype - expression correlation analysis identified 1221 genes related to villus height, including increased cell cycling gene expression in more severe enteropathy. Amino acid transporters and ZIP zinc transporters were specifically increased in severe enteropathy, but transcripts for xenobiotic metabolising enzymes were reduced. INTERPRETATION: Transcriptomic analysis of this rare collection of intestinal biopsies identified multiple novel elements of pathology, including specific alterations in nutrient transporters. Changes in xenobiotic metabolism in the gut may alter drug disposition. Both NOIseq and GSEA identified gene clusters similar to those differentially expressed in pediatric Crohn's disease but to a much lesser degree than those identified in coeliac disease. FUND: Bill & Melinda Gates Foundation OPP1066118. The funding agency had no role in study design, data collection, data analysis, interpretation, or writing of the report

    Malnutrition enteropathy in Zambian and Zimbabwean children with severe acute malnutrition: A multi-arm randomized phase II trial.

    Get PDF
    Malnutrition underlies almost half of all child deaths globally. Severe Acute Malnutrition (SAM) carries unacceptable mortality, particularly if accompanied by infection or medical complications, including enteropathy. We evaluated four interventions for malnutrition enteropathy in a multi-centre phase II multi-arm trial in Zambia and Zimbabwe and completed in 2021. The purpose of this trial was to identify therapies which could be taken forward into phase III trials. Children of either sex were eligible for inclusion if aged 6-59 months and hospitalised with SAM (using WHO definitions: WLZ <-3, and/or MUAC <11.5 cm, and/or bilateral pedal oedema), with written, informed consent from the primary caregiver. We randomised 125 children hospitalised with complicated SAM to 14 days treatment with (i) bovine colostrum (n = 25), (ii) N-acetyl glucosamine (n = 24), (iii) subcutaneous teduglutide (n = 26), (iv) budesonide (n = 25) or (v) standard care only (n = 25). The primary endpoint was a composite of faecal biomarkers (myeloperoxidase, neopterin, α1-antitrypsin). Laboratory assessments, but not treatments, were blinded. Per-protocol analysis used ANCOVA, adjusted for baseline biomarker value, sex, oedema, HIV status, diarrhoea, weight-for-length Z-score, and study site, with pre-specified significance of P < 0.10. Of 143 children screened, 125 were randomised. Teduglutide reduced the primary endpoint of biomarkers of mucosal damage (effect size -0.89 (90% CI: -1.69,-0.10) P = 0.07), while colostrum (-0.58 (-1.4, 0.23) P = 0.24), N-acetyl glucosamine (-0.20 (-1.01, 0.60) P = 0.67), and budesonide (-0.50 (-1.33, 0.33) P = 0.32) had no significant effect. All interventions proved safe. This work suggests that treatment of enteropathy may be beneficial in children with complicated malnutrition. The trial was registered at ClinicalTrials.gov with the identifier NCT03716115

    Health Outcomes, Pathogenesis and Epidemiology of Severe Acute Malnutrition (HOPE-SAM): rationale and methods of a longitudinal observational study

    Get PDF
    INTRODUCTION: Mortality among children hospitalised for complicated severe acute malnutrition (SAM) remains high despite the implementation of WHO guidelines, particularly in settings of high HIV prevalence. Children continue to be at high risk of morbidity, mortality and relapse after discharge from hospital although long-term outcomes are not well documented. Better understanding the pathogenesis of SAM and the factors associated with poor outcomes may inform new therapeutic interventions. METHODS AND ANALYSIS: The Health Outcomes, Pathogenesis and Epidemiology of Severe Acute Malnutrition (HOPE-SAM) study is a longitudinal observational cohort that aims to evaluate the short- and long-term clinical outcomes of HIV-positive and HIV-negative children with complicated SAM, and to identify the risk factors at admission and discharge from hospital that independently predict poor outcomes. Children aged 0-59mo hospitalised for SAM are being enrolled at three tertiary hospitals in Harare, Zimbabwe, and Lusaka, Zambia. Longitudinal mortality, morbidity and nutritional data are being collected at admission, discharge and for 48 weeks post-discharge. Nested laboratory substudies are exploring the role of enteropathy, gut microbiota, metabolomics and cellular immune function in the pathogenesis of SAM using stool, urine and blood collected from participants and from well-nourished controls

    Histo-Blood Group Antigens, Enteropathogen Carriage and Environmental Enteropathy in Stunted Zambian Children.

    No full text
    OBJECTIVES: Stunting, the most common form of childhood undernutrition, is associated with environmental enteropathy (EE). Enteric infections are believed to play a role in the pathophysiology of EE and stunting though the exact mechanism remains undetermined. The FUT2 (secretor) and FUT3 (Lewis) genes have been shown to be associated with some symptomatic enteric infections in both children and adults. These genes are responsible for the presence of histo-blood group antigens (HBGAs) in various secretions and epithelial surfaces.We evaluated whether the secretor and Lewis status influences asymptomatic enteric infections and thus EE severity on duodenal biopsies of stunted children. METHODS: In this case-control study, we used saliva samples to determine the secretor and Lewis status of stunted children (cases, n = 113) enrolled in a nutritional rehabilitation program and from their well-nourished counterparts (controls, n = 42). Where available, saliva was also collected from the mothers. Baseline stool samples were used to detect asymptomatic enteropathogen carriage. Duodenal biopsies were collected from a subgroup of stunted children (n = 77) who had an upper GI endoscopy done as part of the evaluation process for their non-response to nutritional therapy. RESULTS: The proportion of secretors was similar between the cases and the controls (82% vs 81%, p = 0.81). The stunted children had significantly higher rates of carrying multiple enteropathogens, but this was not associated with their sector status nor that of their mothers. The secretor status was also not associated with mucosal morphometry of duodenal biopsies. CONCLUSION: This case-control analysis in Zambian children does not support the hypothesis that fucosylation status determines asymptomatic enteropathogen carriage in stunting

    Epithelial Abnormalities in the Small Intestine of Zambian Children With Stunting.

    Get PDF
    Background: Environmental enteropathy (EE) contributes to impaired linear growth (stunting), in millions of children worldwide. We have previously reported that confocal laser endomicroscopy (CLE) shows fluorescein leaking from blood to gut lumen in vivo in adults and children with EE. We set out to identify epithelial lesions which might explain this phenomenon in Zambian children with stunting non-responsive to nutritional support. Methods: We performed confocal laser endomicroscopy (CLE) in 75 children and collected intestinal biopsies for histology in 91 children. CLE videos were evaluated, employing the Watson score to determine severity of leakiness. Morphometry was carried out on well-orientated mucosa and 3 biopsies were examined by electron microscopy. Results: Confocal laser endomicroscopy demonstrated substantial leakage from circulation to gut lumen in 73 (97%) children. Histology consistently showed characteristic changes of EE: villus blunting, lamina propria and epithelial inflammation, and depletion of secretory cells (Paneth cells and goblet cells). Epithelial abnormalities included marked variability in epithelial height, disorganised and shortened microvilli, dilated intercellular spaces, pseudostratification, formation of synechiae between epithelium on adjacent villi, crypt destruction, and abundant destructive lesions which may correspond to the microerosions identified on CLE. Conclusion: Epithelial abnormalities were almost universal in Zambian children with non-responsive stunting, including epithelial microerosions, cell-cell adhesion anomalies, and defects in secretory cells which may all contribute to impairment of mucosal barrier function and microbial translocation
    corecore