61 research outputs found

    Whole-Exome Sequencing Reveals High Mutational Concordance between Primary and Matched Recurrent Triple-Negative Breast Cancers

    Full text link
    PURPOSE Triple-negative breast cancer (TNBC) is a molecularly complex and heterogeneous breast cancer subtype with distinct biological features and clinical behavior. Although TNBC is associated with an increased risk of metastasis and recurrence, the molecular mechanisms underlying TNBC metastasis remain unclear. We performed whole-exome sequencing (WES) analysis of primary TNBC and paired recurrent tumors to investigate the genetic profile of TNBC. METHODS Genomic DNA extracted from 35 formalin-fixed paraffin-embedded tissue samples from 26 TNBC patients was subjected to WES. Of these, 15 were primary tumors that did not have recurrence, and 11 were primary tumors that had recurrence (nine paired primary and recurrent tumors). Tumors were analyzed for single-nucleotide variants and insertions/deletions. RESULTS The tumor mutational burden (TMB) was 7.6 variants/megabase in primary tumors that recurred (n = 9); 8.2 variants/megabase in corresponding recurrent tumors (n = 9); and 7.3 variants/megabase in primary tumors that did not recur (n = 15). MUC3A was the most frequently mutated gene in all groups. Mutations in MAP3K1 and MUC16 were more common in our dataset. No alterations in PI3KCA were detected in our dataset. CONCLUSIONS We found similar mutational profiles between primary and paired recurrent tumors, suggesting that genomic features may be retained during local recurrence

    A novel tissue-specific meta-analysis approach for gene expression predictions, initiated with a mammalian gene expression testis database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the recent years, there has been a rise in gene expression profiling reports. Unfortunately, it has not been possible to make maximum use of available gene expression data. Many databases and programs can be used to derive the possible expression patterns of mammalian genes, based on existing data. However, these available resources have limitations. For example, it is not possible to obtain a list of genes that are expressed in certain conditions. To overcome such limitations, we have taken up a new strategy to predict gene expression patterns using available information, for one tissue at a time.</p> <p>Results</p> <p>The first step of this approach involved manual collection of maximum data derived from large-scale (genome-wide) gene expression studies, pertaining to mammalian testis. These data have been compiled into a Mammalian Gene Expression Testis-database (MGEx-Tdb). This process resulted in a richer collection of gene expression data compared to other databases/resources, for multiple testicular conditions. The gene-lists collected this way in turn were exploited to derive a 'consensus' expression status for each gene, across studies. The expression information obtained from the newly developed database mostly agreed with results from multiple small-scale studies on selected genes. A comparative analysis showed that MGEx-Tdb can retrieve the gene expression information more efficiently than other commonly used databases. It has the ability to provide a clear expression status (transcribed or dormant) for most genes, in the testis tissue, under several specific physiological/experimental conditions and/or cell-types.</p> <p>Conclusions</p> <p>Manual compilation of gene expression data, which can be a painstaking process, followed by a consensus expression status determination for specific locations and conditions, can be a reliable way of making use of the existing data to predict gene expression patterns. MGEx-Tdb provides expression information for 14 different combinations of specific locations and conditions in humans (25,158 genes), 79 in mice (22,919 genes) and 23 in rats (14,108 genes). It is also the first system that can predict expression of genes with a 'reliability-score', which is calculated based on the extent of agreements and contradictions across gene-sets/studies. This new platform is publicly available at the following web address: <url>http://resource.ibab.ac.in/MGEx-Tdb/</url></p

    Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer

    Full text link
    BackgroundRecent microarray and sequencing studies of prostate cancer showed multiple molecular alterations during cancer progression. It is critical to evaluate these molecular changes to identify new biomarkers and targets. We performed analysis of glycine-N-acyltransferase like 1 (GLYATL1) expression in various stages of prostate cancer in this study and evaluated the regulation of GLYATL1 by androgen.MethodWe performed in silico analysis of cancer gene expression profiling and transcriptome sequencing to evaluate GLYATL1 expression in prostate cancer. Furthermore, we performed immunohistochemistry using specific GLYATL1 antibody using high-density prostate cancer tissue microarray containing primary and metastatic prostate cancer. We also tested the regulation of GLYATL1 expression by androgen and ETS transcription factor ETV1. In addition, we performed RNA-sequencing of GLYATL1 modulated prostate cancer cells to evaluate the gene expression and changes in molecular pathways.ResultsOur in silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry, we show that GLYATL1 is overexpressed in primary prostate cancer compared with metastatic prostate cancer and benign prostatic tissue. Low-grade cancers had higher GLYATL1 expression compared to high-grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways.ConclusionsIn summary, our study characterizes the expression of GLYATL1 in prostate cancer and explores the regulation of its regulation in prostate cancer showing role for androgen and ETS transcription factor ETV1. Future studies are needed to decipher the biological significance of these findings.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151252/1/pros23887.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151252/2/pros23887_am.pd

    MGEx-Udb: A Mammalian Uterus Database for Expression-Based Cataloguing of Genes across Conditions, Including Endometriosis and Cervical Cancer

    Get PDF
    Gene expression profiling of uterus tissue has been performed in various contexts, but a significant amount of the data remains underutilized as it is not covered by the existing general resources.). The database can be queried with gene names/IDs, sub-tissue locations, as well as various conditions such as the cervical cancer, endometrial cycles and disorders, and experimental treatments. Accordingly, the output would be a) transcribed and dormant genes listed for the queried condition/location, or b) expression profile of the gene of interest in various uterine conditions. The results also include the reliability score for the expression status of each gene. MGEx-Udb also provides information related to Gene Ontology annotations, protein-protein interactions, transcripts, promoters, and expression status by other sequencing techniques, and facilitates various other types of analysis of the individual genes or co-expressed gene clusters.In brief, MGEx-Udb enables easy cataloguing of co-expressed genes and also facilitates bio-marker discovery for various uterine conditions

    Global impact of somatic structural variation on the cancer proteome

    No full text
    Abstract Both proteome and transcriptome data can help assess the relevance of non-coding somatic mutations in cancer. Here, we combine mass spectrometry-based proteomics data with whole genome sequencing data across 1307 human tumors spanning various tissues to determine the extent somatic structural variant (SV) breakpoint patterns impact protein expression of nearby genes. We find that about 25% of the hundreds of genes with SV-associated cis-regulatory alterations at the mRNA level are similarly associated at the protein level. SVs associated with enhancer hijacking, retrotransposon translocation, altered DNA methylation, or fusion transcripts are implicated in protein over-expression. SVs combined with altered protein levels considerably extend the numbers of patients with tumors somatically altered for critical pathways. We catalog both SV breakpoint patterns involving patient survival and genes with nearby SV breakpoints associated with increased cell dependency in cancer cell lines. Pan-cancer proteogenomics identifies targetable non-coding alterations, by virtue of the associated deregulated genes

    RNA-seq Reveals the Overexpression of IGSF9 in Endometrial Cancer

    No full text
    We performed RNA-seq on an Illumina platform for 7 patients with endometrioid endometrial carcinoma for which both tumor tissue and adjacent noncancer tissue were available. A total of 66 genes were differentially expressed with significance level at adjusted p value < 0.01. Using the gene functional classification tool in the NIH DAVID bioinformatics resource, 5 genes were found to be the only enriched group out of that list of genes. The gene IGSF9 was chosen for further characterization with immunohistochemical staining of a larger cohort of human endometrioid carcinoma tissues. The expression level of IGSF9 in cancer cells was significantly higher than that in control glandular cells in paired tissue samples from the same patients (p=0.008) or in overall comparison between cancer and the control (p=0.003). IGSF9 expression is higher in patients with myometrium invasion relative to those without invasion (p=0.015). Reanalysis of RNA-seq dataset from The Cancer Genome Atlas shows higher expression of IGSF9 in endometrial cancer versus normal control and expression was associated with poor prognosis. These results suggest IGSF9 as a new biomarker in endometrial cancer and warrant further studies on its function, mechanism of action, and potential clinical utility

    Distinct Gene Expression Profiles of Matched Primary and Metastatic Triple-Negative Breast Cancers

    Get PDF
    Background: Although triple-negative breast cancer (TNBC) is associated with an increased risk of recurrence and metastasis, the molecular mechanisms underlying metastasis in TNBC remain unknown. To identify transcriptional changes and genes regulating metastatic progression in TNBC, we compared the transcriptomic profiles of primary and matched metastatic tumors using massively parallel RNA sequencing. Methods: We performed gene expression profiling using formalin-fixed paraffin-embedded (FFPE) TNBC tissues of patients from two cohorts: the Zurich cohort (n = 31) and the Stavanger cohort (n = 5). Among the 31 patients in the Zurich cohort, 18 had primary TNBC tumors that did not metastasize, and 13 had primary tumors that metastasized (11 paired primary and locoregional recurrences). The Stavanger cohort included five matched primary and metastatic TNBC tumors. Significantly differentially expressed genes (DEGs; absolute fold change &ge;2, p &lt; 0.05) were identified and subjected to functional analyses. We investigated if there was any overlap between DEGs from both the cohorts with epithelial-to-mesenchymal-to-amoeboid transition (EMAT) gene signature. xCell was used to estimate relative fractions of 64 immune and stromal cell types in each RNA-seq sample. Results: In the Zurich cohort, we identified 1624 DEGs between primary TNBC tumors and matched metastatic lesions. xCell analysis revealed a significantly higher immune scores for metastatic lesions compared to paired primary tumors in the Zurich cohort. We also found significant upregulation of three MammaPrint signature genes (HRASLS, TGFB3 and RASSF7) in primary tumors that metastasized compared to primary tumors that remained metastasis-free. In the Stavanger cohort, we identified 818 DEGs between primary tumors and matched metastatic lesions. No significant differences in xCell immune scores were observed. We found that 21 and 14 DEGs from Zurich and Stavanger cohort, respectively, overlapped with the EMAT gene signature. In both cohorts, genes belonging to the MMP, FGF, and PDGFR families were upregulated in primary tumors compared to matched metastatic lesions. Conclusions: Our results suggest that distinct gene expression patterns exist between primary TNBCs and matched metastatic tumors. Further studies are warranted to explore whether these discrete expression profiles underlie or result from disease status

    Distinct Gene Expression Profiles of Matched Primary and Metastatic Triple-Negative Breast Cancers

    Full text link
    Background: Although triple-negative breast cancer (TNBC) is associated with an increased risk of recurrence and metastasis, the molecular mechanisms underlying metastasis in TNBC remain unknown. To identify transcriptional changes and genes regulating metastatic progression in TNBC, we compared the transcriptomic profiles of primary and matched metastatic tumors using massively parallel RNA sequencing. Methods: We performed gene expression profiling using formalin-fixed paraffin-embedded (FFPE) TNBC tissues of patients from two cohorts: the Zurich cohort (n = 31) and the Stavanger cohort (n = 5). Among the 31 patients in the Zurich cohort, 18 had primary TNBC tumors that did not metastasize, and 13 had primary tumors that metastasized (11 paired primary and locoregional recurrences). The Stavanger cohort included five matched primary and metastatic TNBC tumors. Significantly differentially expressed genes (DEGs; absolute fold change ≄2, p < 0.05) were identified and subjected to functional analyses. We investigated if there was any overlap between DEGs from both the cohorts with epithelial-to-mesenchymal-to-amoeboid transition (EMAT) gene signature. xCell was used to estimate relative fractions of 64 immune and stromal cell types in each RNA-seq sample. Results: In the Zurich cohort, we identified 1624 DEGs between primary TNBC tumors and matched metastatic lesions. xCell analysis revealed a significantly higher immune scores for metastatic lesions compared to paired primary tumors in the Zurich cohort. We also found significant upregulation of three MammaPrint signature genes (HRASLS, TGFB3 and RASSF7) in primary tumors that metastasized compared to primary tumors that remained metastasis-free. In the Stavanger cohort, we identified 818 DEGs between primary tumors and matched metastatic lesions. No significant differences in xCell immune scores were observed. We found that 21 and 14 DEGs from Zurich and Stavanger cohort, respectively, overlapped with the EMAT gene signature. In both cohorts, genes belonging to the MMP, FGF, and PDGFR families were upregulated in primary tumors compared to matched metastatic lesions. Conclusions: Our results suggest that distinct gene expression patterns exist between primary TNBCs and matched metastatic tumors. Further studies are warranted to explore whether these discrete expression profiles underlie or result from disease status
    • 

    corecore