663 research outputs found

    Phase-diagram of two-color lattice QCD in the chiral limit

    Full text link
    We study thermodynamics of strongly coupled lattice QCD with two colors of massless staggered fermions as a function of the baryon chemical potential μ\mu in 3+1 dimensions using a new cluster algorithm. We find evidence that the model undergoes a weak first order phase transition at μ=0\mu=0 which becomes second order at a finite μ\mu. Symmetry considerations suggest that the universality class of these phase transitions should be governed by an O(N)×O(2)O(N)\times O(2) field theory with collinear order, with N=3 at μ=0\mu=0 and N=2 at μ0\mu \neq 0. The universality class of the second order phase transition at μ0\mu\neq 0 appears to be governed by the decoupled XY fixed point present in the O(2)×O(2)O(2)\times O(2) field theory. Finally we show that the quantum (T=0) phase transition as a function of μ\mu is a second order mean field transition.Comment: 31 pages, 12 figure

    Gauge and matter fields as surfaces and loops - an exploratory lattice study of the Z(3) Gauge-Higgs model

    Full text link
    We discuss a representation of the Z(3) Gauge-Higgs lattice field theory at finite density in terms of dual variables, i.e., loops of flux and surfaces. In the dual representation the complex action problem of the conventional formulation is resolved and Monte Carlo simulations at arbitrary chemical potential become possible. A suitable algorithm based on plaquette occupation numbers and link-fluxes is introduced and we analyze the model at zero temperature and finite density both in the weak and strong coupling phases. We show that at zero temperature the model has different first order phase transitions as a function of the chemical potential both for the weak and strong coupling phases. The exploratory study demonstrates that alternative degrees of freedom may successfully be used for Monte Carlo simulations in several systems with gauge and matter fields.Comment: Typos corrected and some statements refined. Final version to appear in Phys. Rev.

    Studies on lipolytic bacteria in stored fish Etroplus suratensis (Bloch)

    Get PDF
    The distribution of total hectrotrophic bacteria (THB) and lipolytic bacteria in various regions (body surface, gill, intestine and flesh) of fish Etroplus suratensis (Bloch) during storage at 28 ± 2°C and 4°C was studied. Pseudomonas dominated at reduced temperature whereas at 28 ± 2°C and in fresh condition Vibrio, Aeromonas, and Acinetobacter dominated. Lipolytic activity was elaborated by the members of various genera and their activity varied in different lipid compounds (tributyrin, tween 80, tween 60, tween 40 and tween 20). Tributyrin was utilized by majority of the isolates. All the selected isolates preferred a temperature of 35°C and pH 6.0 for their maximum growth. Aeromonas and Vibrio showed maximum growth at 0.5% NaCl concentration while 3% NaCl was found to be optimum for Pseudomonas

    Kosterlitz-Thouless Universality in a Fermionic System

    Full text link
    A new extension of the attractive Hubbard model is constructed to study the critical behavior near a finite temperature superconducting phase transition in two dimensions using the recently developed meron-cluster algorithm. Unlike previous calculations in the attractive Hubbard model which were limited to small lattices, the new algorithm is used to study the critical behavior on lattices as large as 128×128128\times 128. These precise results for the first time show that a fermionic system can undergo a finite temperature phase transition whose critical behavior is well described by the predictions of Kosterlitz and Thouless almost three decades ago. In particular it is confirmed that the spatial winding number susceptibility obeys the well known predictions of finite size scaling for T<TcT<T_c and up to logarithmic corrections the pair susceptibility scales as L2ηL^{2-\eta} at large volumes with 0η0.250\leq\eta\leq 0.25 for 0TTc0\leq T\leq T_c.Comment: Revtex format; 4 pages, 2 figure

    A Multi-level Algorithm for Quantum-impurity Models

    Full text link
    A continuous-time path integral Quantum Monte Carlo method using the directed-loop algorithm is developed to simulate the Anderson single-impurity model in the occupation number basis. Although the method suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization errors. Further, many observables including the impurity susceptibility and a variety of fermionic observables can be calculated efficiently. Finally the new approach allows us to explore a general technique, called the multi-level algorithm, to solve the sign problem. We find that the multi-level algorithm is able to generate an exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be easily generalized to other multi-impurity problems.Comment: 9 pages, 8 figure

    Mortality of olive ridley turtles during nesting season along Chennai coast

    Get PDF
    Sporadic nesting activities of olive ridley turtle (Lepidochelys olivacea) are often reported along the Chennai coast in northern Tamil Nadu. These turtles approach the beaches for nesting in the Tamil month of Panguni and have thus derived the local name “Panguni aamai”. As in every year, with the onset of annual nesting season in early 2017, mortality of turtles along the Chennai coast was recorded. From 02.01.2017 to 07.01.2017, a total of seven adult turtle carcasses were observed in 20km stretch of beach between Marina beach and Kanathur Reddykuppam

    Two-Hole Bound States from a Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet

    Full text link
    Identifying the correct low-energy effective theory for magnons and holes in an antiferromagnet has remained an open problem for a long time. In analogy to the effective theory for pions and nucleons in QCD, based on a symmetry analysis of Hubbard and t-J-type models, we construct a systematic low-energy effective field theory for magnons and holes located inside pockets centered at lattice momenta (\pm pi/2a,\pm pi/2a). The effective theory is based on a nonlinear realization of the spontaneously broken spin symmetry and makes model-independent universal predictions for the entire class of lightly doped antiferromagnetic precursors of high-temperature superconductors. The predictions of the effective theory are exact, order by order in a systematic low-energy expansion. We derive the one-magnon exchange potentials between two holes in an otherwise undoped system. Remarkably, in some cases the corresponding two-hole Schr\"odinger equations can even be solved analytically. The resulting bound states have d-wave characteristics. The ground state wave function of two holes residing in different hole pockets has a d_{x^2-y^2}-like symmetry, while for two holes in the same pocket the symmetry resembles d_{xy}.Comment: 35 pages, 11 figure

    Non-perturbative Quantum Dynamics of the Order Parameter in the Pairing Model

    Full text link
    We consider quantum dynamics of the order parameter in the discrete pairing model (Richardson model) in thermodynamic equilibrium. The integrable Richardson Hamiltonian is represented as a direct sum of Hamiltonians acting in different Hilbert spaces of single-particle and paired/empty states. This allows us to factorize the full thermodynamic partition function into a combination of simple terms associated with real spins on singly-occupied states and the partition function of the quantum XY-model for Anderson pseudospins associated with the paired/empty states. Using coherent-state path-integral, we calculate the effects of superconducting phase fluctuations exactly. The contribution of superconducting amplitude fluctuations to the partition function in the broken-symmetry phase is shown to follow from the Bogoliubov-de Gennes equations in imaginary time. These equations in turn allow several interesting mappings, e.g., they are shown to be in a one-to-one correspondence with the one-dimensional Schr\"odinger equation in supersymmetric Quantum Mechanics. However, the most practically useful approach to calculate functional determinants is found to be via an analytical continuation of the quantum order parameter to real time, \Delta(\tau -> it), such that the problem maps onto that of a driven two-level system. The contribution of a particular dynamic order parameter to the partition function is shown to correspond to the sum of the Berry phase and dynamic phase accumulated by the pseudospin. We also examine a family of exact solutions for two-level-system dynamics on a class of elliptic functions and suggest a compact expression to estimate the functional determinants on such trajectories. The possibility of having quantum soliton solutions co-existing with classical BCS mean-field is discussed.Comment: 34 pages (v2: Typos corrected, references added

    Kosterlitz Thouless Universality in Dimer Models

    Full text link
    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.Comment: 4 pages, 4 figure
    corecore