269 research outputs found

    Explorations of cooperation and recalcitrance in secure mental health hospitals

    Get PDF
    This paper reports on the findings of three qualitative research studies undertaken within, respectively, medium and low secure units in one UK region, and a high secure mental health hospital in England (UK). The first study investigated alliance based involvement practices. The second explored service user and staff views and sense making of the notion of recovery. The third study is ongoing into service user and staff experiences of extreme coercive measures, such as forms of restraint and long-term seclusion or segregation. All studies utilised either semi-structured interviews or focus groups. All data was subject to thematic analysis

    Elevated Gene Expression of Glutamate Receptors in Noradrenergic Neurons From the Locus Coeruleus in Major Depression

    Get PDF
    Glutamate receptors are promising drug targets for the treatment of urgent suicide ideation and chronic major depressive disorder (MDD) that may lead to suicide completion. Antagonists of glutamatergic NMDA receptors reduce depressive symptoms faster than traditional antidepressants, with beneficial effects occurring within hours. Glutamate is the prominent excitatory input to the noradrenergic locus coeruleus (LC). The LC is activated by stress in part through this glutamatergic input. Evidence has accrued demonstrating that the LC may be overactive in MDD, while treatment with traditional antidepressants reduces LC activity. Pathological alterations of both glutamatergic and noradrenergic systems have been observed in depressive disorders, raising the prospect that disrupted glutamate-norepinephrine interactions may be a central component to depression and suicide pathobiology. This study examined the gene expression levels of glutamate receptors in post-mortem noradrenergic LC neurons from subjects with MDD (most died by suicide) and matched psychiatrically normal controls. Gene expression levels of glutamate receptors or receptor subunits were measured in LC neurons collected by laser capture microdissection. MDD subjects exhibited significantly higher expression levels of the NMDA receptor subunit genes, GRIN2B and GRIN2C, and the metabotropic receptor genes, GRM4 and GRM5, in LC neurons. Gene expression levels of these receptors in pyramidal neurons from prefrontal cortex (BA10) did not reveal abnormalities in MDD. These findings implicate disrupted glutamatergic-noradrenergic interactions at the level of the stress-sensitive LC in MDD and suicide, and provide a theoretical mechanism by which glutamate antagonists may exert rapid antidepressant effects

    Low Gene Expression of Bone Morphogenetic Protein 7 in Brainstem Astrocytes in Major Depression

    Get PDF
    The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD

    Paternal effect on genomic activation, clinical pregnancy and live birth rate after ICSI with cryopreserved epididymal versus testicular spermatozoa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study takes an in depth look at embryonic development, implantation, pregnancy and live birth rates with frozen epididymal and testicular sperm from obstructed (OA) and non-obstructed (NOA) patients.</p> <p>Methods</p> <p>Paternal effect of sperm source on zygote formation, embryonic cleavage, and genomic activation were examined. Additional outcome parameters monitored were clinical pregnancy rate (CPR), implantation rate (IR) and live birth rate.</p> <p>Results</p> <p>In this report, we retrospectively analyzed 156 ICSI cycles using cryopreserved epididymal sperm (ES; n = 77) or testicular sperm (TESE; n = 79). The developmental potential of embryos did not appear to be influenced by the type of surgically retrieved sperm. The average number of blastomeres observed on Day 3 was not different among different groups; 7.5 +/- 1.7 (ES), 7.6 +/- 2.1 (TESE-OA) and 6.5 +/- 2.3 (TESE-NOA). Compaction and blastulation rates, both indicators of paternal genomic activation, were similar in embryos derived from ICSI with ES or TESE from OA as well as NOA men. The only parameter significantly affected in NOA-TESE cases was the fertilization rate. CPR and IR with cryopreserved TESE (TESE-OA 59%, 34%, and TESE-NOA 37%, 20%) were also not statistically different, from that achieved with cryopreserved ES (61% and 39%). Live birth rates also appeared to be independent of sperm type. The 87 clinical pregnancies established using cryopreserved TESE and ES, resulted in the birth of 115 healthy infants. No congenital anomalies were noted.</p> <p>Conclusion</p> <p>Zygotic activation seems to be independent of sperm origin and type of azoospermia.</p

    Altered miRNA expression network in locus coeruleus of depressed suicide subjects

    Get PDF
    Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior

    Deletion of the Pluripotency-Associated Tex19.1 Gene Causes Activation of Endogenous Retroviruses and Defective Spermatogenesis in Mice

    Get PDF
    As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1−/− knockout mice and analysed the Tex19.1−/− mutant phenotype. Adult Tex19.1−/− knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1−/− testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1−/− mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations
    • …
    corecore