29 research outputs found

    Linkage and related analyses of Barrett's esophagus and its associated adenocarcinomas

    Get PDF
    BACKGROUND: Familial aggregation and segregation analysis studies have provided evidence of a genetic basis for esophageal adenocarcinoma (EAC) and its premalignant precursor, Barrett's esophagus (BE). We aim to demonstrate the utility of linkage analysis to identify the genomic regions that might contain the genetic variants that predispose individuals to this complex trait (BE and EAC). METHODS: We genotyped 144 individuals in 42 multiplex pedigrees chosen from 1000 singly ascertained BE/EAC pedigrees, and performed both model‐based and model‐free linkage analyses, using S.A.G.E. and other software. Segregation models were fitted, from the data on both the 42 pedigrees and the 1000 pedigrees, to determine parameters for performing model‐based linkage analysis. Model‐based and model‐free linkage analyses were conducted in two sets of pedigrees: the 42 pedigrees and a subset of 18 pedigrees with female affected members that are expected to be more genetically homogeneous. Genome‐wide associations were also tested in these families. RESULTS: Linkage analyses on the 42 pedigrees identified several regions consistently suggestive of linkage by different linkage analysis methods on chromosomes 2q31, 12q23, and 4p14. A linkage on 15q26 is the only consistent linkage region identified in the 18 female‐affected pedigrees, in which the linkage signal is higher than in the 42 pedigrees. Other tentative linkage signals are also reported. CONCLUSION: Our linkage study of BE/EAC pedigrees identified linkage regions on chromosomes 2, 4, 12, and 15, with some reported associations located within our linkage peaks. Our linkage results can help prioritize association tests to delineate the genetic determinants underlying susceptibility to BE and EAC

    RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas

    Get PDF
    Esophageal adenocarcinoma (EAC) is a deadly cancer with increasing incidence in the U.S., but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene-fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pre-treatment EAC and 49 non-malignant biopsy tissues from patients undergoing endoscopy for Barrett’s esophagus. In this cohort, we identified 21 novel candidate EAC-associated fusions occurring in 3.33%-11.67% of EACs. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pre-treatment EAC (N=115) and non-malignant (N=183) biopsy tissues. In particular, we observed RPS6KB1–VMP1 gene fusion as a recurrent event occurring in ~10% of EAC cases. Notably, EAC cases harboring RPS6KB1–VMP1 fusions exhibited significantly poorer overall survival as compared to fusion-negative cases. Mechanistic investigations established that the RPS6KB1–VMP1 transcript coded for a fusion protein which significantly enhanced the growth rate of non-dysplastic Barrett’s esophagus cells. Compared to the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1–VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1–VMP1 as a genetic fusion that promotes EAC by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas

    Predicting Barrett's Esophagus in Families: An Esophagus Translational Research Network (BETRNet) Model Fitting Clinical Data to a Familial Paradigm

    Get PDF
    Barrett’s esophagus (BE) is often asymptomatic and only a small portion of BE patients are currently diagnosed and under surveillance. Therefore, it is important to develop risk prediction models to identify high-risk individuals with BE. Familial aggregation of BE and esophageal adenocarcinoma (EAC), and the increased risk of EAC for individuals with a family history, raise the necessity of including genetic factors in the prediction model. Methods to determine risk prediction models using both risk covariates and ascertained family data are not well-developed

    Inverse Association Between Gluteofemoral Obesity and Risk of Barrett's Esophagus in a Pooled Analysis

    Get PDF
    Gluteofemoral obesity (determined by measurement of subcutaneous fat in the hip and thigh regions) could reduce risks of cardiovascular and diabetic disorders associated with abdominal obesity. We evaluated whether gluteofemoral obesity also reduces the risk of Barrett's esophagus (BE), a premalignant lesion associated with abdominal obesity
    corecore