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Abstract

Background—Barrett’s esophagus (BE) is often asymptomatic and only a small portion of BE 

patients are currently diagnosed and under surveillance. Therefore, it is important to develop risk 

prediction models to identify high-risk individuals with BE. Familial aggregation of BE and 

esophageal adenocarcinoma (EAC), and the increased risk of EAC for individuals with a family 

history, raise the necessity of including genetic factors in the prediction model. Methods to 

determine risk prediction models using both risk covariates and ascertained family data are not 

well-developed.

Methods—We developed a Barrett’s Esophagus Translational Research Network (BETRNet) risk 

prediction model from 787 singly ascertained BE pedigrees and 92 multiplex BE pedigrees, fitting 

a multivariate logistic model that incorporates family history and clinical risk factors. The eight 

risk factors age, sex, education level, parental status, smoking, heartburn frequency, regurgitation 

frequency, and use of acid suppressant, were included in the model. The prediction accuracy was 

evaluated on the training dataset and an independent validation dataset of 643 multiplex BE 

pedigrees.

Results—Our results indicate family information helps to predict BE risk, and predicting in 

families improves both prediction calibration and discrimination accuracy.

Conclusions—Our model can predict BE risk for anyone with family members known to have, 

or not have, had BE. It can predict risk for unrelated individuals without knowing any relatives’ 

information.
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Introduction

During the past thirty years, the incidence of esophageal adenocarcinoma (EAC) has 

increased dramatically up to 7-fold in the United States (1,2). EAC is a lethal cancer with 5-

year survival rates lower than 20% (3). Barrett’s esophagus (BE) is the only known 

precursor for EAC, with BE patients having an 11- to 30-fold increased risk of developing 

EAC (4,5). Moreover, BE and EAC aggregate in some families (6). The population 

prevalence of BE is estimated to be between 1-3% (7,8), and the prevalence of BE in the 

family members of patients who had BE is estimated to be higher than in the general 

population (8%) (9). However, BE is often asymptomatic and, among older people, it may 

actually be associated with a decreased GERD symptom burden (10,11). It is estimated that 

only 5% of patients who have BE are currently diagnosed and under surveillance. The 

majority of EAC patients do not have an antecedent diagnosis of BE and are diagnosed in 

the late stages of the disease (12). To detect EAC early, it is necessary to first develop a risk 

prediction model that identifies high-risk individuals with BE.

To date, models that include clinical/environmental risk factors for predicting BE or EAC 

risk have been developed using unrelated case-control or cohort data (13-17). Although the 

rapidly increasing incidence of EAC in recent decades indicates the importance of 
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environmental factors in assessing the disease risk, familial aggregation of Barrett’s 

esophagus and esophageal adenocarcinoma, and the increased risk of EAC for individuals 

with a family history (6,9), raise the necessity of including familial factors in the prediction 

model. The heritability of polygenic liability to BE and EAC has been estimated to be 35% 

and 25%, respectively (18). In this study, we developed a Barrett’s Esophagus Translational 

Research Network (BETRNet) model that incorporates family members’ information in 

addition to clinical risk factors in predicting an individual’s absolute risk of BE.

Material and methods

Data

BE was rigorously defined as the presence of intestinal metaplasia in biopsies obtained from 

endoscopically-visible columnar mucosa in the tubular esophagus. Intestinal metaplasia on 

biopsies of the gastroesophageal junction or an irregular Z-line was not accepted as BE. We 

considered BE, EAC, and gastroesophageal junctional adenocarcinomas (JAC) to be part of 

the same trait, theorizing that at least a proportion of these cancers arose from BE. For 

assessing risk of BE in our prediction models we considered any individual with BE, EAC, 

or gastroesophageal junctional adenocarcinoma to be affected. Individuals were considered 

unaffected only if they had upper endoscopy that excluded Barrett’s esophagus. To ascertain 

the exposure variables, we used a standardized questionnaire based on the validated MAYO 

GERD questionnaire (19). This modified questionnaire has previously been used in studies 

of familial aggregation (20).

Through the Barrett’s Esophagus Translational Research Network (BETRNet), we collected 

two independent sets of Barrett’s esophagus pedigree data, which are respectively used as 

training and validation data. The training set comprises 787 singly ascertained and 92 

multiplex pedigrees, each of which includes two or more persons, at least one of which is 

affected with BE or EAC. Single ascertainment assumes that a pedigree enters the sample 

analyzed because of only a single proband. Our methodology for collecting this initial set of 

pedigrees has been previously reported (6,20,21). These pedigrees were used to estimate the 

parameters of the prediction model (coefficients of covariates, genotypic susceptibilities and 

the allele frequency at a trait locus). The independent validation dataset was collected 

separately but used the same trait definitions and comprised 643 multiplex familial BE 

pedigrees. A summary of the characteristics of the members of the training and validation 

datasets is shown in Table 1.

The prediction model

Using a pedigree likelihood based on a multivariate logistic model (MLM) that includes 

segregation at a major trait locus (22), we assessed the predictive utility of genetic factors, 

demographic factors (age, sex, body mass index (BMI), education level, parental status), 

environmental factors (smoking, alcohol consumption, use of acid suppressant medications, 

gastroesophageal reflux symptoms such as GERD and heartburn), and affection status 

among family members. The prediction model was obtained from a generalized and 

modified version of the SEGREG program in the S.A.G.E. package (23). In SEGREG, 

although there is no restriction on the size of the family, the family is assumed to be non-
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inbred and to contain no children of consanguineous spouse pairs. We considered all the 

predicting variables that were reported to be risk factors of BE or EAC (13-17), and found 

13 variables available in our data.

Values of the predictor variables for most of the unaffected individuals were missing in both 

the training and validation datasets (Supplementary Table S1). Nevertheless, we were able to 

impute age (for the missing 40%) using the family structure according to the method of 

Schnell et al (24). Moreover, observing that the sum of known date of birth (DOB) and age 

at examination are mostly between 1999 and 2010, we could to a good approximation 

assume that the time of diagnosis (DOB + age at examination) is equal for all members in a 

family, and hence impute age on 98.5% of the individuals (Supplementary Methods, 

Supplementary Figures S1 - S2). The training dataset of 787 pedigrees that we used initially 

to estimate the parameters for the prediction model has missing values on the predictor 

variables for most of the unaffected individuals (94% missing, Supplementary Table S1). 

Because the missingness depends on the affection status, not on the predictor variable 

values, it should not influence the estimation of regression coefficients on the covariates; but 

it will influence the estimation of the baseline risk, which is related to the genetic parameters 

(the allele frequencies at an assumed trait locus and the genotypic penetrances). However, 

because the ascertainment of the BE pedigrees would also influence estimation of the 

genetic parameters, we estimated the covariate and genetic parameters in the MLM model in 

two separate steps (figure 1).

Step 1. Determine and estimate the covariate regression coefficients. In this step, we fitted 

multivariate logistic models without adjusting for ascertainment using the training data of 

787 pedigrees. We initially included all the thirteen prediction variables (ln(age), sex, 

education level, parental status, years of smoking, smoking packs per day, use of alcohol, 

heartburn frequency, age of onset of heartburn, regurgitation frequency, age of onset of 

regurgitation, BMI, and use of acid suppressant) as covariates of a single baseline 

susceptibility in the MLM model. The clinical predictors were coded to make the variables 

jointly linear on the susceptibility scale (logit scale) (Supplementary Methods, 

Supplementary Figures S3, S4). We then stepwise removed covariates on the basis of 

likelihood ratio tests (LRT) and Akaike’s information criterion (AIC). This analysis is 

identical to multivariable logistic regression. We also evaluated the covariates of 

susceptibility by fitting MLM models with two genetic susceptibilities of a latent two-allele 

locus (Supplementary Table S2). This analysis, in which the penetrance of the heterozygote 

could equal that of either homozygote, indicated incomplete dominance of the disease-

susceptibility allele. Eight covariates, ln(age), sex, education level, parental status, years of 

smoking, heartburn frequency, regurgitation frequency, and use of acid suppressant, were 

finally determined as the variables to use as covariates in the prediction model 

(Supplementary Table S3). Their regression coefficients estimated in the MLM model that 

assumed a mixture of two (latent) genetic susceptibilities determined by a dominant one-

locus model were used in the prediction.

Step 2. Estimate the genetic parameters. In order to estimate the genetic parameters of the 

MLM model, which are the genotypic susceptibilities on the logit scale and the population 

allele frequency at the trait locus, we refitted by maximum likelihood the two-allele model, 
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but now adjusting the likelihood for ascertainment. In doing this the estimates of the 8 

covariates were fixed at the estimates from the first step The 787 BE pedigrees in the 

training dataset were taken to be singly ascertained, so in estimating the genetic parameters 

we adjusted for single ascertainment in the likelihood function by conditioning the 

likelihood function on the phenotype of the proband. Once again the result indicated 

incomplete dominance of a disease-susceptibility allele.

The additional multiplex 92 BE pedigrees, which were collected later, were not singly 

ascertained. We combined them with the 787 singly ascertained pedigrees, and also 

estimated the genetic parameters using these 879 pedigrees. Because the 879 pedigrees were 

not all singly ascertained, we both used an adjustment for single ascertainment and 

additionally added a prevalence constraint on the model when maximizing the likelihood 

function (25), the population prevalence being constrained to that estimated from the 787 

pedigrees.

With the estimated parameters for the prediction models, the probability that a random 

family member i will have BE (by a particular age and at defined covariate values, omitted 

below for clarity), given the family information available, is then obtained from the pedigree 

likelihoods according to Bayes’ theorem:

(1)

where LA=L(i is affected, other family members’ information) is the pedigree likelihood 

with individual i assumed to be affected and LU=L(i is unaffected, other family members’ 

information) is the pedigree likelihood with individual i assumed to be unaffected. Both 

pedigree likelihoods can be outputs of SEGREG.

Evaluating the prediction accuracy of the model

Two assessments were used to evaluate the accuracy of the prediction model. One used the 

calibration criterion, which measures how well the average predicted probabilities agree 

with the proportion of individuals who actually developed disease. The other used the 

discrimination criterion, which measures how well the model can separate cases (affected) 

from controls (unaffected). The calibration assessment we used is the ratio of the observed 

count to the expected count of BE subjects, O/E (26,27). The expected count is the sum of 

the predicted probabilities of being affected with BE over all individuals in the sample, and 

the observed count is the actual number of affected individuals. A 95% confidence interval 

for this ratio is between a lower limit of (O/E)exp(−1.96×O−1/2) and an upper limit of (O/

E)exp(1.96×O−1/2) (26,27). A P-value for departure from goodness-of-fit can be obtained 

from the χ2 distributed statistic (O-E)2/E with one degree of freedom (26,27). The 

discrimination assessment we used is the c statistic, which is the area under the receiver 

operating characteristic (ROC) curve (AUC). The c statistic is a function of sensitivity (true 
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positive rate) and specificity (true negative rate); it measures the probability that predicting 

the outcome is better than chance (50%).

With the estimated prediction model, we can predict the absolute risk for an individual in a 

randomly sampled pedigree using formula (1), by calculating two unconditional pedigree 

likelihoods while fixing the parameter estimates in the MLM model. The prediction 

accuracy of the prediction model was evaluated in the independent validation dataset of 643 

BE pedigrees, as well as in the 787 pedigrees of the training dataset. However, neither 

dataset was randomly sampled from the population: the data on the 787 BE pedigrees were 

singly ascertained through a proband, the independent data on the 643 BE pedigrees were 

multiplex pedigrees.

In order to predict the risk for individuals in singly ascertained pedigrees, we need to 

calculate the pedigree likelihoods conditioned on the appropriate subset C, which includes 

the probands (23). The risk for such an individual is:

(2)

where LAC and LUC are the two conditional pedigree likelihoods output by SEGREG on 

adjusting for single ascertainment.

In SEGREG,

(3)

and

(4)

where LA and LU are as given in formula (1) and LC is the likelihood function for the 

proband. C is the subset of pedigree members to be conditioned on, which includes only the 

probands (singly ascertained pedigrees have one proband per pedigree). LC is taken to be the 

pedigree likelihood L computed as though all individuals not in C are missing (23).

(1) For a non-proband in a singly ascertained pedigrees, according to formulae (2) - 

(4), the probability of being affected given his/her family members’ information 

and the proband’s status is , which 

means his/her risk equals the risk for an individual in a randomly sampled 

pedigree. This equality is intuitive, because for a non-proband in a singly 

ascertained pedigree, the probability of being affected pic = prob(individual i is 
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affected|other family members’ information, and the proband’ s information and 

affected status), and because the proband is one of the “other family members”, 

pic = prob(individual i is affected|other family members’ information) = pi. This 

equality also indicates that single ascertainment can be automatically adjusted 

by predicting in a family.

(2) For a proband in a singly ascertained pedigree, the probability of being affected 

is (see Supplementary Methods)

(5)

This shows that because the proband’s affection status in a singly ascertained pedigree is 

already known, the risk of a proband being affected is either 1 or 0 depending on affection 

status.

In evaluating the prediction model using our ascertained pedigrees, we used formula (1) or 

(2) to predict the BE risk for non-probands (they produce exactly the same risk), and used 

formula (5) to predict the risk for probands. For any individual from a random family or for 

an unrelated individual in the population, we can predict his/her BE risk by formula (1). The 

prediction accuracy for all individuals (probands and non-probands) and for the non-

probands alone were respectively evaluated.

Estimating the variance due to genetic factors and the variance due to environmental, 
demographic and clinical factors

In order to study how much the prediction is improved by using family information, we 

estimated the variance due to genetic factors and the variance due to other factors using the 

training dataset that the model was estimated from, because it had many more non-probands 

than did the validation dataset. We predicted the risk for individual i in a family (denoted by 

R(Gi,xi)), and estimated the predicted risk for any individual i assuming all individuals are 

unrelated, which means that everyone has the same genotypic frequencies , and has the 

corresponding risk R( ,xi). We also estimated the risk in families but assuming that every 

individual has the same covariate value  (  = E(x)), and thus estimated the corresponding 

risk R(Gi, ). Whether on the logit scale or on the probability scale, the genetic factors 

(genotypic frequencies G) and the environmental factors (covariates x) are not linear in the 

risk, and therefore among the non-probands (as well among all individuals), mean(R(Gi,xi)) 

≠ mean(R( ,xi)) ≠ mean(R(Gi, )). In order to roughly estimate the variance explained by 

the genetic and environmental factors, we made the three means equal in the following way. 

In estimating R( ,xi), we found the allele frequency (q = 0.096) that made mean(R( ,xi)) = 

mean(R(Gi,xi)) (where mean(R(Gi,xi)) = 0.113); Similarly, in estimating R(Gi, ), we found 

the value k (k = −0.433) that made the mean covariate value  ( =E(x)+k×SD(x)×sign(βx)) 

such that (R(Gi, )) = mean(R(Gi,xi)) = 0.113, where sign(βx) is the sign of the estimated 

regression on covariate x.
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Results

The estimated parameters in the prediction model

Using the 787 singly ascertained pedigrees, we estimated the coefficients of the predictor 

covariates without adjusting for ascertainment in a multivariable logistic model that assumed 

a mixture of two (latent) genetic susceptibilities determined by a dominant one-locus model. 

The estimates of the regression coefficients (Table 2) should be approximately unbiased 

provided only that the linear logistic model is appropriate for the fixed effects (28).

The genetic parameters (genotypic susceptibilities and allele frequency of the trait locus) 

were then estimated by maximum likelihood under a dominant model while adjusting the 

likelihood for ascertainment. In estimating the genetic parameters, the 8 covariates were 

fixed at the estimates in Table 2. The estimate of the genetic parameters using the 787 singly 

ascertained pedigrees (model 1) and the one with additional 92 pedigrees (model 2) are 

listed in Table 3; on the penetrance scale the estimates from the two datasets are close to 

each other.

Predicting BE risk from the prediction model

As an example, we show in Table 4 the probability that a family member will have BE by 

age 50 or 70 according to the affection status of one or two older siblings. As we can see, for 

a 50 year old male, if he has one sister with BE and one sister without BE (the last row), his 

probability of being affected is 13.8% (by prediction model 1); if he has both sisters 

affected, his probability of being affected increases to 32.9%; and if he has two affected 

brothers, his probability of being affected is 26.6%.

Prediction accuracy

The accuracy of the prediction model that was fitted from the training dataset of 787 singly 

ascertained pedigrees (model 1) was evaluated separately on both the training dataset itself, 

and the independent validation dataset of 643 pedigrees. We evaluated this model because 

this model is fitted by the 787 singly ascertained pedigrees and theoretically such single 

ascertainment has been accurately adjusted for in this model. Moreover, the ascertainment 

adjustment of model 2 was based on the prevalence from model 1, and the estimates and the 

predictions of the two models are very close, so we evaluated the fundamental model 1. In 

these two datasets, the clinical variables used in the prediction model were largely missing, 

especially on the unaffected individuals. In the training dataset, there were 689 pedigrees 

with 1170 individuals who were informative for all the covariates (Table 1), and in the 

validation dataset, only 248 pedigrees with 420 individuals were informative for all the 8 

covariates. These are the individuals who were used to predict the risk of Barrett’s 

esophagus.

Because the datasets were not randomly ascertained, predicted BE risks for the probands are 

known to be either 0 or 1 (formula 5), so prediction for non-probands is more meaningful to 

evaluate the prediction performance. As we can see in Table 5, prediction using relatives’ 

information (predicting in a pedigree) has better calibration accuracy O/E than prediction 

without relatives’ information (prediction assuming the individuals are unrelated, i.e., each 
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individual is assumed to be in a one-individual pedigree). In the training dataset, the 

prediction O/E for non-probands is 0.943 (95% CI: 0.722 to 1.231) when predicting with 

relatives’ information, but is 1.666 (95% CI: 1.276 to 2.176) when predicting without 

relatives’ information, indicating that predicting without using relatives’ information 

significantly underestimates the BE risk (P = 1.48×10−4). In the validation dataset, although 

O/E for prediction with relatives’ information is 1.378 (95% CI: 0.931 to 2.039), the 

overestimate of BE risk is not significant (P = 0.108); while O/E for prediction without 

relatives’ information is 2.564 (95% CI: 1.732 to 3.794), suggesting significant 

underestimation of BE risk when predicting without family information (P = 1.05×10−6). 

Prediction with relatives’ information also had better discrimination accuracy, AUC, than 

prediction without relatives’ information in the training dataset: for non-probands, AUC was 

0.753 vs. 0.741 respectively for prediction with and without relatives’ information. However, 

in the validation dataset, the change in AUC between prediction with and without family 

information was very small (0.803 vs. 0.806). Our results indicate that, on average, 

prediction in families has better prediction accuracy than prediction without relatives’ 

information; family information improves the prediction accuracy.

Variances due to genetic factors and to environmental/demographic/clinical factors

After making mean (R(Gi,xi)) = mean (R( ,xi)) = mean (R(Gi, )), the sum of squares (ss) 

due to genetic factors, the other factors, and the total ss were respectively 

; ; 

. Thus, because ssGi/(ssGi + ssxi = 11.327 > 

9.775 = sstotal, there appeared to be no interaction between Gi and xi. Estimating ssGi/(ssGi + 

ssxi) = 21.9%, the genetic factors contributed about 22% and the other factors about 78% of 

the total variance in the 787 singly ascertained pedigrees.

Discussion

In this study, we developed a BETRNet model to predict absolute risk of Barrett’s esophagus 

in families by incorporating into the model both clinical and genetic factors. Based on the 

values of multiple clinical variables for family members, our model can predict BE risk for 

anyone with family members known to have had, or not have had, BE. It can also predict for 

unrelated individuals without any relatives’ information. Our results indicate that the family 

information helps to predict BE risk, and predicting in families improves both the prediction 

calibration and the discrimination accuracy. Our prediction model will lead to effective 

identification of high risk individuals for BE screening and surveillance, consequently 

allowing intervention at an early stage leading to a reduction in mortality from esophageal 

adenocarcinoma.

Compared with other BE and EAC prediction models (13-17), our prediction model has the 

advantage of incorporating information on relatives. However, if no information on relatives 

is available, our prediction model can still predict for such “unrelated” individuals in the 

same way that the other prediction models do. Moreover, if BE causal genes are discovered, 
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it will easily allow incorporation of such causal genes into the model. In addition, the model 

can adjust for single ascertainment for predicting in a family.

Our definition of “affected” status has included BE and its associated cancers because they 

are epidemiologically similar and there is strong evidence that nearly all EACs and a 

substantial proportion of junctional cancers arise in Barrett’s epithelium (4,5,29). Some of 

the cancers included in this prediction model may not have arisen in BE. However, because 

the prevalence of BE is much higher than that of cancer, it is unlikely that this 

misclassification will affect the prediction model. It is important to note that this model 

should be used only for families in which BE is rigorously defined by confirming the 

presence of intestinal metaplasia in biopsies obtained from visible columnar mucosa in the 

tubular esophagus. The prediction model should not be used in families where the diagnosis 

of BE has not been confirmed in family members.

Clinical data were collected on both affected and unaffected family members using a FBE 

questionnaire (20) based on the Mayo GERQ (19). However, because the major goal in 

collecting the pedigrees used in this study was to discover susceptibility genes for BE and 

EAC, family members affected with BE, EAC, or gastroesophageal junctional 

adenocarcinomas were much more likely to participate than unaffected family members. The 

large proportion of missing data on the covariates among the unaffected individuals in the 

training dataset could result in biased estimates of the genotypic susceptibilities, or of the 

allele frequencies for the genetic trait locus, but any such bias could not be identified by our 

validation data, which had a similar missing-value problem. In addition, our result showed 

that in the training data the calibration assessment (O/E) is close to 1, while in the validation 

dataset our prediction underestimated BE risk, which may indicate the difference in 

ascertainment between the training and validation datasets. However, the possible bias 

should not be serious because the estimated population prevalence of Barrett’s esophagus 

from our prediction model is 3.0%, close to the reported population prevalence (7). 

Moreover, the missing data resulted in loss of family information (Supplementary Table S4); 

71% of the pedigrees in the training set had only one informative individual, which could be 

the reason the prediction with relatives’ information did not improve much on discrimination 

accuracy (AUC) compared with prediction without such information. Despite the missing 

data, our study shows that our model, which included family information, was able to 

predict risk of BE.

Note that although we modeled the familial effect as a latent variable in the form of a 

diallelic susceptibility locus, this does not imply that this is the true genetic model; the true 

underlying model is undoubtedly more complex, in terms of both genetics and the 

environment. What we have demonstrated in this paper is the importance of including this 

familial effect into the prediction model. As shown in the example scenarios in Table 4, for a 

male at age 50 with an unaffected brother, his risk is 3.2%; but if he has one affected brother, 

his risk is almost tripled (9.1%); furthermore, if he has two affected brothers, his risk is 

further tripled (26.6%). These increases are attributable to the genetically modeled familial 

effect. What may appear to be a peculiarity in Table 4 is that in some instances the 

probability of being affected is seen to be higher at age 50 than at age 70. This arises 

because the sibs are assumed to be about the same age as the family member. Consider, for 
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example, a male at age 50 with two affected brothers, for whom the predicted risk is 26.6%; 

whereas (in the same line of the table) at age 70 his risk is only 20.1%. In the former case 

we know that the two brothers were already affected by ages 52 and 54, whereas in the latter 

case they may have become affected when up to 20 years older, implying the possibility of a 

lower genetic predisposition in the family.

In a future study, as more BE pedigrees and more informative individuals in pedigrees are 

prospectively and rigorously collected, we could improve our prediction model with updated 

data, and further validate it against external populations. Extensive simulation studies could 

help find more appropriate strategies to deal with complex ascertainments and missing data, 

to improve the estimation of clinical and genetic parameters in the prediction model. 

Simulation studies could also help determine the value of risk prediction for different genetic 

models, for example, if the disease is transmitted largely recessively. Furthermore, a web-

based application (30) has been developed to allow risk calculations with subsequent 

endoscopy data, so that the model could be monitored over time to improve its accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Financial support: X. Sun was supported in part by U54 CA163060 grant from the National Cancer Institute; R. 
Elston was supported in part by U54 CA163060 grant from the National Cancer Institute and 
NRF-2014S1A2A2028559 grant from the Korean Government; J.S. Barnholtz-Sloan, N.J. Shaheen, P.G. Iyer, J.A. 
Abrams, J.E. Willis were supported in part by U54 CA163060; S. Markowitz was supported in part by grant P50 
CA150964 from the National Cancer Institute; A. Chandar, J.M. Warfe, W. Brock, A. Chak were supported in part 
by grant U54 CA163060 from the National Cancer Institute.

References

1. Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of 
esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005; 97:142–6. [PubMed: 15657344] 

2. Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white 
Americans by sex, stage, and age. J Natl Cancer Inst. 2008; 100:1184–7. [PubMed: 18695138] 

3. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat 
Oncol. 2007; 17:2–9. [PubMed: 17185192] 

4. Solaymani-Dodaran M, Logan RF, West J, Card T, Coupland C. Risk of oesophageal cancer in 
Barrett’s esophagus and gastro-oesophageal reflux. Gut. 2004; 53:1070–4. [PubMed: 15247170] 

5. Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P. Incidence of 
adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011; 365:1375–83. 
[PubMed: 21995385] 

6. Chak A, Ochs-Balcom H, Falk G, Grady WM, Kinnard M, Willis JE, et al. Familiality in Barrett’s 
esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal 
junction. Cancer Epidemiol Biomarkers Prev. 2006; 15:1668–73. [PubMed: 16985029] 

7. Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling-Sternevald E, et al. Prevalence of 
Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology. 2005; 
129:1825–31. [PubMed: 16344051] 

8. Zagari RM, Fuccio L, Wallander MA, Johansson S, Fiocca R, Casanova S, et al. Gastro-oesophageal 
reflux symptoms, oesophagitis and Barrett’s oesophagus in the general population: the Loiano-
Monghidoro study. Gut. 2008; 57:1354–9. [PubMed: 18424568] 

Sun et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Juhasz A, Mittal SK, Lee TH, Deng C, Chak A, Lynch HT. Prevalence of Barrett’s Esophagus in 
first degree relatives of patients with esophageal adenocarcinoma. J Clin Gastroenterol. 2011; 
45:867–71. [PubMed: 21617543] 

10. Ward EM, Wolfsen HC, Achem SR, Loeb DS, Krishna M, Hemminger LL, et al. Barrett’s 
esophagus is common in older men and women undergoing screening colonoscopy regardless of 
reflux symptoms. Am J Gastroenterol. 2006; 101:12–7. [PubMed: 16405528] 

11. Gerson LB, Shetler K. Triadafilopoulos G. Prevalence of Barrett’s esophagus in asymptomatic 
individuals. Gastroenterology. 2002; 123:461–7. [PubMed: 12145799] 

12. Juhasz A, Mittal SK, Lee TH, Deng C, Chak A, Lynch HT. Prevalence of Barrett esophagus in 
first-degree relatives of patients with esophageal adenocarcinoma. J Clin Gastroenterol. 2011; 
45:867–71. [PubMed: 21617543] 

13. Thrift AP, Kendall BJ, Pandeya N, Whiteman DC. A model to determine absolute risk for 
esophageal adenocarcinoma. Clin Gastroenterol Hepatol. 2013; 11:138–44. [PubMed: 23103823] 

14. Thrift AP, Kendall BJ, Pandeya N, Vaughan TL, Whiteman DC. Study of Digestive Health. A 
clinical risk prediction model for Barrett esophagus. Cancer Prev Res. 2012; 5:1115–23.

15. Thrift AP, Kramer JR, Qureshi Z, Richardson PA, El-Serag HB. Age at onset of GERD symptoms 
predicts risk of Barrett’s esophagus. Am J Gastroenterol. 2013; 108:915–22. [PubMed: 23567358] 

16. Rubenstein JH, Morgenstern H, Appelman H, Scheiman J, Schoenfeld P, McMahon LF Jr, et al. 
Prediction of Barrett’s esophagus among men. Am J Gastroenterol. 2013; 108:353–62. [PubMed: 
23318485] 

17. Bhat S, Coleman HG, Yousef F, Johnston BT, McManus DT, Gavin AT, et al. Risk of malignant 
progression in Barrett’s esophagus patients: results from a large population-based study. J Natl 
Cancer Inst. 2011; 103:1049–57. [PubMed: 21680910] 

18. Ek WE, Levine DM, D’Amato M, Pedersen NL, Magnusson PK, Bresso F, et al. Germline genetic 
contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal 
reflux. J Natl Cancer Inst. 2013; 105:1711–8. [PubMed: 24168968] 

19. Locke GR, Talley NJ, Weaver AL, Zinsmeister AR. A new questionnaire for gastroesophageal 
reflux disease. Mayo Clin Proc. 1994; 69:539–47. [PubMed: 8189759] 

20. Chak A, Lee T, Kinnard MF, Brock W, Faulx A, Willis J, et al. Familial aggregation of Barrett’s 
oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in 
Caucasian adults. Gut. 2002; 51:323–8. [PubMed: 12171951] 

21. Chak A, Faulx A, Kinnard M, Brock W, Willis J, Wiesner GL, et al. Identification of Barrett’s 
esophagus in relatives by endoscopic screening. Am J Gastroenterol. 2004; 99:2107–14. [PubMed: 
15554988] 

22. Karunaratne PM, Elston RC. A multivariate logistic model (MLM) for analyzing binary family 
data. Am J Med Genet. 1998; 76:428–37. [PubMed: 9556304] 

23. Statistical Analysis for Genetic Epidemiology (S.A.G.E.) Version 6.3. 

24. Schnell AH, Elston RC, Hull PR, Lane PR. Major gene segregation of actinic prurigo among North 
American Indians in Saskatchewan. Am J Med Genet. 2000; 92:212–9. [PubMed: 10817657] 

25. Sun X, Vengoechea J, Elston R, Chen Y, Amos CI, Armstrong G, et al. A variable age of onset 
segregation model for linkage analysis, with correction for ascertainment, applied to glioma. 
Cancer Epidemiol Biomarkers Prev. 2012; 21:2242–51. [PubMed: 22962404] 

26. Gail MH, Costantino JP, Pee D, Bondy M, Newman L, Selvan M, et al. Projecting individualized 
absolute invasive breast cancer risk in African American women. J Natl Cancer Inst. 2007; 
99:1782–92. [PubMed: 18042936] 

27. Matsuno RK, Costantino JP, Ziegler RG, Anderson GL, Li H, Pee D, et al. Projecting 
individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. 
J Natl Cancer Inst. 2011; 103:951–61. [PubMed: 21562243] 

28. McCulloch CE, Neuhaus JM. Misspecifying the Shape of a Random Effects Distribution: Why 
Getting It Wrong May Not Matter. Statist Sci. 2011; 26:388–402.

29. Cameron AJ, Ott BJ, Payne WS. The incidence of adenocarcinoma in columnar-lined (Barrett’s) 
esophagus. N Engl J Med. 1985; 313:857–58. [PubMed: 4033716] 

30. http://som-apps.case.edu/betrnet/predication

Sun et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://som-apps.case.edu/betrnet/predication


Impact

Our prediction model will shed light on effectively identifying high risk individuals for 

BE screening and surveillance, consequently allowing intervention at an early stage and 

reducing mortality from esophageal adenocarcinoma.
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Figure 1. 
Flowchart of developing the prediction model
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Table 1

Demographic Characteristics of the pedigree members used for prediction and validation, with numbers of 

individuals (%)

Training Validation

689 pedigrees
a

743 pedigrees
b

248 pedigrees
c

Affected 716 (61.2) 773 (61.9) 237 (56.4)

Male 576 (80.4) 620 (80.2) 198 (83.5)

Female 140 (19.6) 153 (19.8) 39 (16.5)

Subcategories of diagnosis:

BE 402 (56.1) 434 (56.1) 97 (40.9)

SSBE 103 (14.4) 192 (24.8) 62 (26.2)

ECA 177 (24.7) 34 (4.4) 68 (28.7)

JCA 34 ( 4.7) 113 (14.6) 10 ( 4.2)

Education level:

< High school 69( 9.6) 73( 9.8) 16( 6.8)

high school 353(49.3) 389(52.4) 117(49.4)

college and beyond 294(41.1) 311(41.9) 104(43.9)

Heartburn frequency:

None 172(24.0) 172(23.1) 63(26.6)

≤ once a week 319(44.6) 349(47.0) 105(44.3)

several times a week or everyday 225(31.4) 252(33.9) 69(29.1)

Regurgitation frequency:

None 195(27.2) 196(26.4) 75(31.6)

≤ once a month 295(41.2) 326(43.9) 99(41.8)

weekly or more 226(31.6) 251(33.8) 63(26.6)

Unaffected 454 (38.8) 476 (38.1) 183 (43.6)

Male 197 (43.4) 206 (43.3) 71 (50.4)

Female 257 (56.6) 270 (56.7) 112 (48.7)

Education level:

< High school 21( 4.6) 21( 4.4) 5( 2.7)

high school 168(37.0) 177(37.2) 57(31.1)

college and beyond 265(58.4) 278(58.4) 121(66.1)

Heartburn frequency:

None 126(27.8) 128(26.9) 68(37.2)

≤ once a week 214(47.1) 224(47.1) 85(46.4)

several times a week or everyday 114(25.1) 124(26.1) 30(16.4)

Regurgitation frequency:

None 183(40.3) 185(38.9) 81(44.3)

≤ once a month 200(44.1) 206(43.3) 67(36.6)

weekly or more 71(15.6) 85(17.9) 35(19.1)

Total 1170 1249 420
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Training Validation

689 pedigrees
a

743 pedigrees
b

248 pedigrees
c

Male 773 (66.1) 826 (66.1) 269 (64.0)

Female 397 (33.9) 423 (33.9) 151 (36.0)

Education level:

< High school 90( 7.7) 94( 7.5) 21( 5.0)

high school 521(44.5) 566(45.3) 174(41.4)

college and beyond 559(47.8) 589(47.2) 225(53.6)

Heartburn frequency:

None 298(25.5) 300(24.0) 131(31.2)

≤ once a week 533(45.6) 573(45.9) 190(45.2)

several times a week or everyday 339(29.0) 376(30.1) 99(23.6)

Regurgitation frequency:

None 378(32.3) 381(30.5) 156(37.1)

≤ once a month 495(42.3) 532(42.6) 166(39.5)

weekly or more 297(25.4) 336(26.9) 98(23.3)

a
A subset of 787 singly ascertained pedigrees with members who are informative on all the clinical variables

b
A subset of 879 pedigrees (787pedigrees+92multiplex pedigrees) with members who are informative on all the clinical variables

c
A subset of 643 validation pedigrees with members who are informative on all the clinical variables
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Table 2

Estimated effects of covariates using the data on 787 singly ascertained pedigrees

Covariates Estimate S.E. OR 95% CI of OR

Sex −2.101 0.257 0.122 (0.074, 0.202)

Parent 1.015 0.216 2.759 (1.807, 4.214)

Log(age) 3.057 0.416 21.264 (9.409, 48.055)

Years of Smoking 0.021 0.0007 1.021 (1.020, 1.023)

HeartburnFreq −0.245 0.156 0.783 (0.577, 1.063)

RegurgFreq 0.879 0.167 2.408 (1.736, 3.341)

Education −0.418 0.166 0.658 (0.476, 0.912)

Use of acid suppressant 1.506 0.304 4.509 (2.485, 8.181)
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Table 3

Estimated population susceptibility parameters and allele frequency from 787 BE pedigrees and 879 BE 

pedigrees, on adjusting for ascertainment

Model 1
a

Model 2
b

Parameters Estimate S.E. OR 95% CI
of OR Estimate S.E. OR 95% CI

of OR

Susceptibility
c

AA, AB
−12.961 0.628 81.70 (13.73, 486.17) −12.715 0.871 90.56 (5.81, 1410.79)

Susceptibility

BB
c −17.075 0.420 1 −16.854 0.363 1

Frequency of A 0.027 0.016 0.021 0.142

Prevalence
(non-parent at

age 50)
0.030 0.030

Note: OR: Odds Ratio. S.E.: Standard error. CI: Confidence Interval.

a
Adjusting for single ascertainment using 787 pedigrees, finding prevalence = 3.0%

b
Estimated with 879 pedigrees by adjusting for single ascertainment and using prevalence constraint from model 1 (3.0%)

c
The estimates are on the logistic scale
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Table 4

Predicted probability (%) of a family member having BE by (Model 1, Model 2) using the parameter values in 

tables 2 and 3, the values of covariates other than sex, parent and log(age) are at the mean values shown in 

Supplementary Table S3. Parents of the family members are assumed to be unaffected with BE

1st sib
4 years older than

the Family Member

2nd sib
2 years older than the

Family Member

Sex, age of Family Member

Male, 50 Female, 50 Male, 70 Female, 70

Male without BE N/A
3.2 0.5 7.7 1.1

3.7 0.5 9.2 1.3

Female without BE N/A
3.4 0.5 7.8 1.2

3.9 0.6 9.3 1.3

Male with BE N/A
9.1 2.1 10.3 2.4

7.6 1.8 10.7 2.1

Female with BE N/A
14.6 3.7 15.8 5.0

12.5 3.3 14.5 4.2

Male with BE Male with BE
26.6 7.1 20.1 7.1

23.4 6.8 16.2 5.1

Male with BE Male without BE
7.2 1.6 9.1 1.8

6.2 1.3 10.1 1.7

Female with BE Female with BE
32.9 8.9 41.0 17.1

34.3 10.3 38.9 17.5

Female with BE Female without BE
13.8 3.5 14.4 4.3

11.7 3.1 13.3 3.5

NOTE: N/A: no affection status known for a second sibling
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