5 research outputs found

    Mineral and Bone Disorders After Kidney Transplantation

    Get PDF
    The risk of mineral and bone disorders among patients with chronic kidney disease is substantially elevated, owing largely to alterations in calcium, phosphorus, vitamin D, parathyroid hormone, and fibroblast growth factor 23. The interwoven relationship among these minerals and hormones results in maladaptive responses that are differentially affected by the process of kidney transplantation. Interpretation of conventional labs, imaging, and other fracture risk assessment tools are not standardized in the post-transplant setting. Post-transplant bone disease is not uniformly improved and considerable variation exists in monitoring and treatment practices. A spectrum of abnormalities such as hypophosphatemia, hypercalcemia, hyperparathyroidism, osteomalacia, osteopenia, and osteoporosis are commonly encountered in the post-transplant period. Thus, reducing fracture risk and other bone-related complications requires recognition of these abnormalities along with the risk incurred by concomitant immunosuppression use. As kidney transplant recipients continue to age, the drivers of bone disease vary throughout the post-transplant period among persistent hyperparathyroidism, de novo hyperparathyroidism, and osteoporosis. The use of anti-resorptive therapies require understanding of different options and the clinical scenarios that warrant their use. With limited studies underscoring clinical events such as fractures, expert understanding of MBD physiology, and surrogate marker interpretation is needed to determine ideal and individualized therapy

    Evidence of Nickel and Other Trace Elements and Their Relationship to Clinical Findings in Acute Mesoamerican Nephropathy: A Case-Control Analysis

    Get PDF
    BACKGROUND: Although there are several hypothesized etiologies of Mesoamerican Nephropathy (MeN), evidence has not yet pointed to the underlying cause. Exposure to various trace elements can cause the clinical features observed in MeN. METHODS AND FINDINGS: We measured 15 trace elements, including heavy metals, in renal case-patients (n = 18) and healthy controls (n = 36) in a MeN high-risk region of Nicaragua. Toenails clippings from study participants were analyzed using inductively coupled plasma mass spectrometry. A case-control analysis was performed, and concentrations were also analyzed over participant characteristics and clinical parameters. Nickel (Ni) concentrations were significantly higher in toenails from cases (1.554 mg/kg [0.176–42.647]) than controls (0.208 mg/kg [0.055–51.235]; p \u3c 0.001). Ni concentrations correlated positively with serum creatinine levels (p = 0.001) and negatively with eGFR (p = 0.001). Greater Ni exposure was also associated with higher leukocyte (p = 0.001) and neutrophil (p = 0.003) counts, fewer lymphocytes (p = 0.003), and lower hemoglobin (p = 0.004) and hematocrit (p = 0.011). CONCLUSIONS: Low-dose, chronic environmental exposure to Ni is a possible health risk in this setting. Ni intoxication and resulting systemic and renal effects could explain the clinical signs observed during early MeN. This study provides compelling evidence for a role of Ni in the acute renal impairment observed in this MeN high-risk population. Additional work to assess exposure levels in a larger and heterogeneous population, identify environmental sources of Ni and exposure pathways, and evaluate the link between Ni and MeN pathogenesis are urgently needed

    Statin use and hip fractures in U.S. kidney transplant recipients

    No full text
    Abstract Background Basic and translational research supports beneficial effects of statins on bone metabolism. Clinical studies suggest that statin use may reduce the risk of hip fractures in the general population. Whether statin use is associated with hip fracture risk in kidney transplant recipients, a particularly high-risk group for this outcome, is unknown. Methods From the U.S. Renal Data System (2007–2011), we identified all hip fracture events recorded in Medicare billing claims of first-time kidney transplant recipients. We then matched all cases to an unlimited number of controls on age (±3 years), sex, race (black vs. non-black), and time since transplant. Cases and controls were required to have >1 year of Medicare Parts A + B + D coverage and be without a recorded history of hip fracture. We ascertained any statin use in the previous year and defined adherent statin use as those who had filled prescriptions for statins to cover >80% of days in that year (proportion of days covered, PDC). We ascertained several potential confounders (demographics, comorbidities, BMI, transplant-related factors) and applied conditional logistic regression with multiple imputation for missing data to estimate odds ratios (OR) and 95% confidence intervals (CI). Results We identified 231 hip fracture cases (mean age 51.8 years; 53% female; 11.3% black; 6.9 years from transplant, and 9.9 years from ESRD) and 15,575 matched controls. Any prior statin use was present in 64.1% of cases and 60.3% of controls with 37.2% of cases and 33.9% of controls being found adherent. Unadjusted conditional logistic regression showed an OR of 1.17 (0.89-1.54) for any statin use, and a fully-adjusted OR of 0.89 (0.67-1.19). Compared with statin non-users, the adjusted OR for patients with lesser adherence (PDC ≤80%) and those with greater adherence (PDC >80%) were 0.93 (0.66-1.31) and 0.87 (0.63-1.20), respectively. Conclusion Statin use was not associated with hip fracture risk in first-time kidney transplant recipients

    Evidence of nickel and other trace elements and their relationship to clinical findings in acute Mesoamerican Nephropathy: A case-control analysis.

    No full text
    BackgroundAlthough there are several hypothesized etiologies of Mesoamerican Nephropathy (MeN), evidence has not yet pointed to the underlying cause. Exposure to various trace elements can cause the clinical features observed in MeN.Methods and findingsWe measured 15 trace elements, including heavy metals, in renal case-patients (n = 18) and healthy controls (n = 36) in a MeN high-risk region of Nicaragua. Toenails clippings from study participants were analyzed using inductively coupled plasma mass spectrometry. A case-control analysis was performed, and concentrations were also analyzed over participant characteristics and clinical parameters. Nickel (Ni) concentrations were significantly higher in toenails from cases (1.554 mg/kg [0.176-42.647]) than controls (0.208 mg/kg [0.055-51.235]; pConclusionsLow-dose, chronic environmental exposure to Ni is a possible health risk in this setting. Ni intoxication and resulting systemic and renal effects could explain the clinical signs observed during early MeN. This study provides compelling evidence for a role of Ni in the acute renal impairment observed in this MeN high-risk population. Additional work to assess exposure levels in a larger and heterogeneous population, identify environmental sources of Ni and exposure pathways, and evaluate the link between Ni and MeN pathogenesis are urgently needed

    Additional file 1: Table S1. of Statin use and hip fractures in U.S. kidney transplant recipients

    No full text
    Code-algorithms Used to Identify Outcomes and Covariables. Table S2. Characteristic Differences between Hip Fracture Cases and Matched Controls. Figure S1. Flow Diagram of Case Identification and Risk-set Matching. Table S1. Provides International Classification of Diseases (Ninth Revision) and Current Procedural Terminology codes utilized to identify comorbidities and outcomes. Table S2 reports the differences in characteristics (demographics, comorbidities, transplant-related features, immunosuppressive drug use) present between hip fracture cases and matched controls within the overall case-control group. Figure S1. Diagrams how the 231 hip fracture cases were identified and how risk-set matching determined 15,575 matched controls. (DOCX 101 kb
    corecore