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Abstract

Background

Although there are several hypothesized etiologies of Mesoamerican Nephropathy (MeN),

evidence has not yet pointed to the underlying cause. Exposure to various trace elements

can cause the clinical features observed in MeN.

Methods and findings

We measured 15 trace elements, including heavy metals, in renal case-patients (n = 18)

and healthy controls (n = 36) in a MeN high-risk region of Nicaragua. Toenails clippings from

study participants were analyzed using inductively coupled plasma mass spectrometry. A

case-control analysis was performed, and concentrations were also analyzed over partici-

pant characteristics and clinical parameters. Nickel (Ni) concentrations were significantly

higher in toenails from cases (1.554 mg/kg [0.176–42.647]) than controls (0.208 mg/kg

[0.055–51.235]; p<0.001). Ni concentrations correlated positively with serum creatinine lev-

els (p = 0.001) and negatively with eGFR (p = 0.001). Greater Ni exposure was also associ-

ated with higher leukocyte (p = 0.001) and neutrophil (p = 0.003) counts, fewer lymphocytes

(p = 0.003), and lower hemoglobin (p = 0.004) and hematocrit (p = 0.011).

Conclusions

Low-dose, chronic environmental exposure to Ni is a possible health risk in this setting. Ni

intoxication and resulting systemic and renal effects could explain the clinical signs
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observed during early MeN. This study provides compelling evidence for a role of Ni in the

acute renal impairment observed in this MeN high-risk population. Additional work to assess

exposure levels in a larger and heterogeneous population, identify environmental sources of

Ni and exposure pathways, and evaluate the link between Ni and MeN pathogenesis are

urgently needed.

Introduction

An epidemic of chronic kidney disease of unknown etiology (CKDu) emerged in recent

decades in Central America. The most recent estimates attribute 50,000 deaths or more to

Mesoamerican Nephropathy (MeN), as it is often called, most notably among working-age

individuals who are otherwise healthy ([1]. MeN is distinct from other forms of CKD, and tra-

ditional risk factors for kidney disease, such as hypertension, diabetes, and advanced age, are

not implicated [2–6]. Perhaps the most perplexing characteristic of the epidemic is its geo-

graphic distribution, which appears concentrated in ‘hot spots’ along the Pacific coastal low-

lands, extending from Mexico to Panama, but sparing areas inland and on the Atlantic coast

[7–11].

As part of a large, ongoing investigation into the etiology of MeN, we established active sur-

veillance for impaired renal function in a region of northwestern Nicaragua with excess kid-

ney-related morbidity and mortality [1, 6]. While previously characterized as an insidious

chronic disease, we now understand that an early phase often presents as acute kidney injury

(AKI) with neutrophilic leukocytosis, leukocyturia, and anemia, often with mild flu-like illness

[12, 13]. Early renal pathology reflects acute tubulointerstitial nephritis with inflammatory

infiltrate concentrated at the corticomedullary junction [14]. These observations suggest that

the acute renal event is triggered by an exogenous, pro-inflammatory agent. While most

patients recover renal function following AKI, approximately 10% are diagnosed with CKDu

within the first year [13]. It is yet unknown if the AKI epidemic reflects incident kidney disease

(e.g. initiation of the MeN disease process) or acute exacerbations of an already underlying,

subclinical CKDu. There is an urgent need to uncover the agent of disease and reveal the

source of exposure for this vulnerable population.

Heavy metal toxicity has been proposed as a possible etiology of MeN but has not been ade-

quately examined, and the role of other trace elements have not been explored. We conducted

this investigation to ascertain if one or more trace elements, including heavy metals, could be

implicated in the etiology of MeN. We measured trace element exposure in a population of

agriculture workers with documented high rates of MeN [13, 15, 16]. We employed a case-

control analysis to compare exposure levels in individuals with documented acute renal

impairment to healthy controls from the same population. Our overall goal is to provide evi-

dence to guide etiologic discovery and other investigations into the devastating, decades-long

epidemic of CKDu in Central America.

Methods

Data and specimen collection

This study was conducted at a commercial agriculture estate in northwestern Nicaragua,

whose primary crop is sugarcane, as part of a large and interdisciplinary investigation into the

underlying cause(s) of MeN [12, 15]. The estate is in an area hyperendemic for MeN and is a
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hypothesized epicenter of the epidemic. The occupational health program monitors workers’

renal function by measuring serum creatinine levels at annual health screenings and through

targeted screening of field workers. In addition, all patients are screened during clinical

encounters at the estate’s private hospital, which serves as the main source of primary health-

care for workers and their families.

We began hospital-based surveillance for elevated serum creatinine, AKI, and CKD at this

site in 2015. Clinicians report all cases of acute (elevated serum creatinine [>1.3 mg/dl for

males;>1.1 mg/dl for females] or reduced creatinine clearance [17] [<90 ml/min]) and

chronic (CKD diagnoses) renal impairment (Table 1). Acute events are suspected as attribut-

able to MeN by local clinicians if they lack evidence or suspicion of an underlying cause of kid-

ney disease, such as diabetes, hypertension, or congenital cause. This classification is

consistent with the current understanding of MeN and Pan American Health Organization

guidance [2, 4, 12, 13]. Suspected case-patients receive overnight hydration and electrolytes;

almost all fail renal recovery during that short time and are invited to enroll in our MeN

cohort. The study population is well described; patients are classified as having AKI if they

meet established AKIN criteria [12–14, 18]. Cohort participants with acute renal events during

May 2016-Sep 2017 are the source of cases for this analysis.

A convenience sample of agricultural workers from the same estate were enrolled as healthy

counterparts during occupational health screenings in Oct 2016, comprising our “control

cohort”. Controls in this analysis had normal serum creatinine and lacked history of renal dis-

ease, assessed by personal interview and medical record review. We achieved a 1:2 ratio of

cases to controls. This research was reviewed and approved by the Comité Instucional de Revi-

sión Ética (CIRE) del Minsterio de Salud (MINSA) de Nicaragua, the Medical Director of Hos-

pital Alfredo Pellas Chamorro, and the Baylor College of Medicine Institutional Review Board

(H-36498). Written, informed consent was provided by all study participants.

Clinical features, demographics, and laboratory data (blood chemistry, hematology, and

urine analysis) from the hospital encounter during the acute renal event (for cases) or health

screening visit (for controls) was recorded by clinical staff. To characterize change from base-

line, most recent serum creatinine and hematocrit levels and leukocyte count measured prior

to enrollment were abstracted from medical records. Participants were contacted 3 months fol-

lowing enrollment for toenail samples, so that a collected nail fragment reflected exposures

temporally associated with their acute renal event and enrollment visit. Clippings from the

great toe, using clean, stainless steel nail clippers (new per each participant, purchased as a lot

[Fromm International, United States]) were deposited directly into paper specimen envelopes

and transported to the University of Kentucky for analysis.

Table 1. Definitions.

Normal/

Healthy

Normal serum creatinine (�1.3 mg/dL for males or�1.1 mg/dL for females)

Incident AKI Presentation with serum creatinine increased (�0.3 mg/dL or�1.5-fold) over baseline

• Baseline referenced to most recent normal measurement within 1 year prior to AKI event

Renal Recovery Return to normal serum creatinine (>1.3 mg/dL for males or >1.1 mg/dL for females)

• Maintained for�1 year following AKI event

Incident CKD Diagnosis by local nephrologist following�3 months of

• reduced glomerular filtration rate (<60mL/min/1.73m2), calculated from serum creatinine, or

• functional or structural renal alteration, ascertained by blood, urine, or imaging studies

MeN

Diagnosis

Diagnosis by local nephrologist with renal disease (acute or chronic) that cannot reasonably be

attributed to any known cause or underlying comorbidity, such as hypertension, diabetes, old age,

obesity, or congenital deformity

https://doi.org/10.1371/journal.pone.0240988.t001
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Measurement of elements in toenail specimens

Nails were prepared and analyzed as follows [19]. They were cleaned by sonication in 1 mL of

trace metal grade acetone for 15-min, followed by sonication in 1mL 1% Citranox metal-free

detergent for 15-min, and two repetitions of sonication in 1mL 18.2 MΩ deionized (DI) water

for 15-min each. Nails were dried at 60˚C to a constant weight, microwave digested in ultra-

pure HNO3 and H2O2, diluted with DI water, and analyzed by inductively coupled plasma

mass spectrometry for 15 elements: nickel (Ni), aluminum (Al), vanadium (V), manganese

(Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium

(Cd), mercury (Hg), lead (Pb), uranium (U), and chromium (Cr). To account for variability in

nail masses, the sample-specific method detection limit (MDL) was calculated for each speci-

men as: three times the standard deviation of the digestion blanks times the dilution factor

divided by the nail dry mass. Any value less than the MDL reflects a measurement indistin-

guishable from background noise for the element in the specimen, a common problem with

small specimen size in toxicology limiting statistical analysis; thus, in accordance with standard

practice, measurements <MDL were excluded from analysis. Reference limits for toenail ele-

ment concentrations are provided in S1 Table. Quality control procedures followed U.S. EPA

method 6020a [20].

Statistical analysis

We conducted a case-control analysis of trace element exposures as potential contributors of

acute renal impairment in the setting of MeN. Trace element composition in toenail clippings

from 3 months subsequent to enrollment were considered evidence of exposure temporally

proximal to enrollment. Each trace element concentration (if�MDL) is reported in terms of

mg of metal/kg of dry toenail mass. Frequencies (n [%]) are reported for categorical variables,

and continuous variables are reported as median (range). We compared toenail concentrations

from case-patients to those from controls by quantile and Poisson regressions. We report p-

values for comparisons of categorical variables using Pearson’s chi-square or Fisher’s exact

test, and quantile regression for difference in medians for continuous variables. Correlations

are reported using Spearman’s correlation coefficient between continuous elements and using

Goodman and Kruskal’s gamma between ordinal elements.

Using linear regression on log10-transformed data, we assessed association between element

concentrations and serum creatinine. For any element correlated with serum creatinine levels

or associated with case status, we assessed association with clinical laboratory parameters (e.g.

hematocrit, leukocyte count).

Finally, we created two exposure groupings: (1) toenail concentration� the median,

vs< the median, and (2) concentrations�75th-percentile (i.e. the highest exposure quartile),

vs<25th-percentile (i.e. the lowest exposure quartile). To estimate risk of exposure by select

demographic characteristics, we report risk ratios with 95% confidence intervals (RR [95%

CI]). Next, we estimate risk of AKI and of MeN case status following Ni exposure and report

RRs over the same two exposure groupings.

Data management and analyses were performed in Stata 15 (StataCorp, College Station,

USA); statistical tests are two-sided and considered significant at p<0.05.

Results

Toenail clippings were collected from 18 individuals with acutely elevated serum creatinine

(median age 26.9 years [range 20.0–40.0]) and no prior diagnosis of CKD, comprising the

renal cases for this analysis (Table 2). Control participants (n = 36) were similarly aged

(29.5 years [19.0–59.0]; p = 0.229) with normal creatinine. Participants had worked at the
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agriculture estate a median of 5 years, similar for cases (4.0 [0.03–18.0]) as controls (6.6 [0.8–

35.9]; p = 0.226). Although highly variable, toenail masses did not differ by case (4.09g [0.16–

30.36]) or control (2.76g [0.55–12.35]; p = 0.235) status.

Table 2. Characteristics of renal case patients and controls (N = 54).

ALL Case Control p-value

N� N (%) 18 (33.3%) 36 (66.7%)

Sex

Male 54 49 (90.7%) 14 (77.8%) 35 (97.2%) 0.038

Female 5 (9.3%) 4 (22.2%) 1 (2.8%)

Age (years)

<25 54 17 (31.5%) 7 (38.9%) 10 (27.8%) 0.733

25–29 13 (24.1%) 5 (27.8%) 8 (22.2%)

30–34 15 (27.8%) 4 (22.2%) 11 (30.6%)

�35 9 (16.7%) 2 (11.1%) 7 (19.4%)

Number of Years Working at Current Employer

= <2 51 10 (19.6%) 5 (33.3%) 5 (13.9%) 0.184

3 to 6 18 (35.3%) 6 (40%) 12 (33.3%)

7 to 10 11 (21.6%) 3 (20%) 8 (22.2%)

>10 12 (23.5%) 1 (6.7%) 11 (30.6%)

Clinical Status at Enrollment

AKI Stage

AKIN Criteria not Met 48 32 (66.7%) 2 (11.1%) 30 (100%) <0.001

Stage 1 5 (10.4%) 5 (27.8%) 0 (0%)

Stage 2 7 (14.6%) 7 (38.9%) 0 (0%)

Stage 3 4 (8.3%) 4 (22.2%) 0 (0%)

Clinical Status at Baseline^

Elevated Creatinine (>1.3 mg/dL male, >1.1 mg/dL

female)

48 0 (0%) 0 (0%) 0 (0%) n/a

Hematocrit Anemia (<38.8% male, <34.9% female) 31 1 (3.2%) 0 (0%) 1 (5.9%) 1.000

Mean SD (Range) or Median (Range)

Age (years) 54 29 (19, 59) 26.9 (20, 40) 29.5 (19, 59) 0.229

Number of Years Working Current Employer 54 4.7 (0.03, 35.9) 3.6 (0.03, 18.0) 6.6 (0.8, 35.9) 0.226

Changes from Baseline^

Baseline Serum Creatinine (mg/dL) 48 1.0 (0.7, 1.3) 1.0 (0.7, 1.3) 1.0 (0.8, 1.2) 1.000

Change (mg/dL) 48 0.1 (-0.2, 3.3) 1.2 (0.2, 3.3) 0 (-0.2, 0.5) <0.001

Percent Change (%) 48 10.0 (-22.2, 330.0) 139.2 (16.7, 330.0) 0 (-22.2, 62.5) <0.001

Ratio (Enrollment:Baseline) 48 1.1 (0.8, 4.3) 2.4 (1.2, 4.3) 1.0 (0.8, 1.6) <0.001

Baseline Hematocrit (%) 31 45 (38, 49) 45.5 (39, 49) 44 (38, 48) 0.594

Change (%) 30 -0.6 (-12, 8) -9.0 (-12, -3.6) 1.0 (-1, 8) <0.001

Percent Change (%) 30 -1.4 (-25.5, 19.5) -20.5 (-25.5, -9.2) 2.1 (-2.3, 19.5) <0.001

Ratio (Enrollment:Baseline) 30 0.99 (0.75, 1.2) 0.79 (0.75, 0.91) 1.02 (0.98, 1.2) <0.001

Days Elapsed from Baseline 48 180 (29, 361) 92.5 (29, 188) 255.5 (57, 361) <0.001

Baseline eGFR 48 101.3 (69.0, 127.8) 102.5 (69.0, 127.8) 101.3 (75.7, 123.4) 0.900

Baseline Creatinine Clearance (mL/min) 48 106.5 (70.8, 189.0) 110.6 (70.8, 189.0) 103.7 (88.6, 172.5) 0.280

Decrease from Baseline (mL/min) 48 9.6 (-32.5, 113.4) 57.9 (10.1, 113.4) 0 (-32.5, 38.2) <0.001

�Number of participants on whom data was available.

^Most recent laboratory data recorded within the prior year.

https://doi.org/10.1371/journal.pone.0240988.t002
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There was no appreciable renal dysfunction in cases or controls at baseline (Table 2), deter-

mined retrospectively using available clinic records from annual screenings prior to the har-

vest. Serum creatinine measurements available on 48 subjects (18 cases; 30 controls) were

normal at 6 months prior (180 days [29–361]). Baseline hematocrits on 31 subjects were also

normal, save one control male with borderline (Hct 38%) anemia. At acute presentation, creat-

inine values in case-patients reflected a 2.4-fold increase over baseline, and hematocrit levels

had dropped substantially from 45.5% (range 39%-49%) at baseline to 36.0% (range 28%-

41%). Almost all (89%; n = 16) cases were characterized as having AKI by AKIN [18] criteria

and did not recover normal renal function with overnight IV-saline. No changes from baseline

were observed in controls.

Trace elements in toenails

Compared to control participants, toenails from cases had higher concentrations of Ni (1.55

mg/kg [0.18–42.65] vs 0.21 mg/kg [0.06–51.24]; p<0.001), Al (98.94 mg/kg [7.25–344.34] vs

50.92 mg/kg [2.71–374.73]; p = 0.020) and V (0.79 mg/kg [0.20–0.95] vs 0.32 mg/kg [0.06–

0.56]; p = 0.050). In all, 6 elements had sufficient measurements for further analysis (�MDL):

Al (100%), Cu (100%), Zn (100%), Ni (72.2%), Mn (90.7%), and Fe (94.4%) (S2 Table). Of

these, a dose-response relationship with serum creatinine was observed only with Ni (p =

0.001) (Fig 1). A similar pattern emerged for V (p = 0.035); however, a limited number of mea-

surements�MDL (n = 22), resulting in unknown concentrations for subjects with the highest

creatinine levels, limits any interpretation of its role in this disease (Table 3). With respect to

Ni, cases predominated the higher exposure group:77.8% (n = 14) had Ni above the study

median (0.703 mg/kg), compared to only 23.8% (n = 5) of controls (p = 0.001) (Table 4, S2

and S3 Tables). The higher exposure conveyed a near-4-fold risk of renal case status (RR 3.7

[1.5–9.3]).

Nickel and select clinical parameters

Because of its association with decreased renal function, we compared Ni concentrations to

physiologic observations (Fig 2 and S1 Fig). Ni levels correlated with blood leukocyte

(p = 0.001) and neutrophil counts (p = 0.003) but were inversely related to lymphocyte counts

(p = 0.003), hemoglobin (p = 0.004), hematocrit (p = 0.011), red blood cell counts (p = 0.037),

and age (p = 0.006) (Fig 2). Higher Ni concentrations corresponded to lower eGFRs

(p = 0.001) and greater fold-increase in serum creatinine over baseline (p = 0.002). Similar

analyses of Al and V are presented in S1 and S2 Figs, respectively, but sample measurements

limit their interpretation.

We defined an intense Ni-exposure group as the 9 (23.1%) subjects with Ni levels >2.04

mg/kg (75th percentile in this study). Compared to the lowest exposure group (<0.15 mg/kg).,

who were overwhelmingly asymptomatic with normal laboratory parameters, the most distin-

guishing features of intense exposure were elevated creatinine (88.9% vs 0%; p<0.001), moder-

ate leukocytosis (88.9% >12,000 cells/mm3 vs 0%; p<0.001), neutrophilia (100% vs 33.3%;

p<0.001), anemia (80.0% vs 0%; p = 0.010), low red cell counts (80% vs 0%; p = 0.010), and

leukocyturia (77.8% vs 11.1%; p = 0.015) (S3 Table). They also reported back pain (75.0%),

abdominal pain (71.4%), fever (66.7%), and nausea +/- vomiting (66.7%). Subjects in the

higher exposure groups also tended to be younger: age<30 years corresponded to excess risk

of exposures putting them above the Ni median, even after adjusting for case status (RR 2.8

[1.1–6.9]; p = 0.029). No significant differences were observed with respect to sex or number

of years working at the agricultural study site. These intensely exposed individuals had a

heightened risk of renal event (RR 2.7 [1.5–4.7], compared to lower exposure groups) though
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Fig 1. Relationship between toenail trace element concentrations (log10-mg/kg dry nail mass) and serum creatinine level (mg/dL).

https://doi.org/10.1371/journal.pone.0240988.g001
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Table 3. Toenail trace element concentrations (mg/kg dry nail mass), by quartile, for renal case patients and controls.

Control Case ALL No AKI AKI ALL

N 36 (66.7%) 18 (33.3%) 54 (100%) p-value N 32 (66.7%) 16 (33.3%) 48 (100%) p-value

Ni Range 39 0.05–51.24 0.18–42.65 0.06–51.24 35 0.06–51.24 0.18–42.65 0.06–51.24

25th Percentile 0.10 0.82 0.15 0.002� 0.09 1.06 0.13 0.001�

50th Percentile 0.21 1.55 0.70 <0.001� 0.23 2.56 0.82 0.015�

75th Percentile 0.70 5.78 2.04 0.471 0.70 7.72 3.45 0.586

Al Range 54 2.71–374.73 7.25–344.34 2.71–374.73 48 8.62–374.74 7.25–344.34 7.254–374.73

25th Percentile 25.54 59.64 28.67 0.005� 27.90 48.43 29.81 0.019�

50th Percentile 50.92 98.94 61.81 0.020� 56.33 102.97 61.81 0.064

75th Percentile 82.23 150.57 100.67 0.082 78.99 165.26 106.39 0.051

V Range 22 0.06–0.56 0.20–0.95 0.06–0.95 17 0.06–0.56 0.68–0.95 0.06–0.95

25th Percentile 0.17 0.44 0.17 0.002� 0.17 0.68 0.20 0.002�

50th Percentile 0.32 0.79 0.33 0.050� 0.31 0.90 0.34 0.002�

75th Percentile 0.46 0.93 0.50 <0.001� 0.43 0.95 0.52 <0.001�

Mn Range 49 0.10–13.60 0.97–17.19 0.10–17.19 46 0.10–13.60 0.97–17.19 0.10–17.19

25th Percentile 1.02 2.07 1.51 0.062 0.95 2.07 1.36 0.072

50th Percentile 2.31 2.76 2.32 0.735 2.31 3.35 2.32 0.310

75th Percentile 4.43 6.10 5.03 0.344 3.56 7.36 4.33 0.214

Fe Range 51 3.18–368.25 3.31–355.71 3.18–368.25 45 3.18–266.91 3.31–355.71 3.18–355.71

25th Percentile 22.69 33.51 23.63 0.390 22.69 31.60 23.63 0.607

50th Percentile 49.98 81.89 61.22 0.226 49.98 86.16 61.22 0.202

75th Percentile 110.05 120.73 110.81 0.865 98.33 127.50 110.05 0.692

Co Range 10 0.01–0.06 0.02–0.80 0.01–0.80 10 0.01–0.06 0.015–0.80 0.01–0.80

25th Percentile 0.01 0.07 0.03 0.313 0.01 0.07 0.03 0.313

50th Percentile 0.03 0.15 0.10 0.590 0.03 0.15 0.10 0.590

75th Percentile 0.06 0.33 0.18 0.288 0.06 0.33 0.18 0.269

Cu Range 54 0.31–46.91 2.41–14.06 0.31–46.91 48 0.31–46.91 2.41–14.06 0.31–46.91

25th Percentile 2.85 3.67 3.06 0.083 3.11 3.56 3.28 0.261

50th Percentile 3.79 4.31 3.91 0.341 4.15 4.01 4.11 0.914

75th Percentile 4.97 6.47 5.21 0.425 5.09 6.51 5.23 0.307

Zn Range 54 7.17–1773.46 62.08–425.09 7.17–1773.46 48 7.17–1773.46 62.08–425.09 7.167–1773.46

25th Percentile 74.28 78.26 76.39 0.852 74.28 75.18 74.28 0.854

50th Percentile 98.79 96.36 98.79 0.869 104.25 85.99 98.79 0.410

75th Percentile 200.06 129.06 156.69 0.527 167.89 118.23 151.98 0.414

As Range 21 0.03–0.56 0.02–0.35 0.02–0.56 19 0.03–0.56 0.02–0.35 0.02–0.56

25th Percentile 0.08 0.06 0.08 0.847 0.08 0.06 0.06 0.801

50th Percentile 0.27 0.13 0.16 0.317 0.14 0.16 0.16 0.997

75th Percentile 0.38 0.22 0.33 0.167 0.32 0.22 0.32 0.411

Se Range 23 0.32–1.66 0.65–0.95 0.32–1.66 19 0.32–1.66 0.65–0.95 0.32–1.66

25th Percentile 0.55 0.74 0.64 0.112 0.60 0.65 0.64 0.925

50th Percentile 0.70 0.85 0.73 0.631 0.72 0.86 0.73 0.402

75th Percentile 0.87 0.90 0.87 0.993 0.83 0.95 0.86 0.597

Cd Range 21 0.01–0.05 0.01–0.21 0.006–0.21 19 0.006–0.04 0.006–0.21 0.006–0.21

25th Percentile 0.01 0.02 0.015 0.576 0.01 0.02 0.01 0.968

50th Percentile 0.02 0.03 0.02 0.513 0.02 0.02 0.02 0.828

75th Percentile 0.03 0.09 0.04 0.201 0.02 0.11 0.03 0.122

Hg Range 31 0.03–0.25 0.06–0.48 0.03–0.48 28 0.03–0.25 0.06–0.48 0.03–0.48

25th Percentile 0.08 0.12 0.08 0.284 0.08 0.12 0.08 0.292

(Continued)
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risk, even though less precise, is suggested even at lower levels of exposure (RR 11.9 [5.1–28.2]

for individuals�25%-tile vs those in the lowest quartile).

Although the median toenail Ni concentration in this study population was similar to that

for the healthy, rural U.S. reference population (0.79 ug/g; S1 Table), our 75th percentile

approximated the 90th percentile from the reference population, suggesting at least some of

our study participants face greater Ni exposures [19].

Nickel exposure and MeN CKD

Two case-patients, and none of the controls, were subsequently diagnosed with CKD attributed

to MeN: (1) a 33-yr old male, diagnosed with stage 3 CKD only 3 months after acute presentation,

Table 3. (Continued)

Control Case ALL No AKI AKI ALL

50th Percentile 0.12 0.14 0.12 0.464 0.12 0.14 0.26 0.622

75th Percentile 0.16 0.15 0.15 0.794 0.19 0.15 0.17 0.604

Pb Range 21 0.02–1.88 0.06–0.18 0.02–1.88 16 0.02–0.25 0.07–0.18 0.02–0.25

25th Percentile 0.06 0.06 0.06 0.506 0.06 0.07 0.06 0.648

50th Percentile 0.07 0.09 0.07 0.666 0.07 0.10 0.07 0.587

75th Percentile 0.19 0.14 0.18 0.902 0.09 0.18 0.11 0.145

U Range 8 0.004–0.01 0.006–0.03 0.004–0.03 7 0.004–0.01 0.006–0.03 0.004–0.03

25th Percentile 0.006 0.006 0.006 0.912 0.005 0.006 0.006 0.953

50th Percentile 0.009 0.01 0.01 0.479 0.008 0.01 0.01 0.517

75th Percentile 0.01 0.03 0.01 0.062 0.01 0.03 0.01 0.101

Cr Range 13 0.07–1.21 0.34–6.96 0.07–6.96 11 0.07–1.21 0.72–6.96 0.07–6.96

25th Percentile 0.22 0.42 0.35 0.954 0.32 0.72 0.35 0.532

50th Percentile 0.57 0.72 0.72 0.971 0.41 1.88 0.72 0.172

75th Percentile 1.04 1.88 1.19 0.704 0.97 6.96 1.21 0.053

�Statistically significant at p<0.05.

https://doi.org/10.1371/journal.pone.0240988.t003

Table 4. Toenail trace element concentrations (mg/kg dry nail mass), proportions by quartile, for renal case patients and controls.

Control Case ALL RR (95% CI) No AKI AKI ALL RR (95% CI)

N 36 (66.7%) 18 (33.3%) 54 (100%) p-value N 32 (66.7%) 16 (33.3%) 48 (100%) p-value

Ni

>25th Percentile 39 12 (57.1%) 18 (100%) 30 (76.9%) 0.002� 11.9 (5.1, 28.2) ± 35 10 (52.6%) 16 (100%) 26 (74.3%) 0.001� 12.2 (5.2, 28.9)±

>50th Percentile 39 5 (23.8%) 14 (77.8%) 19 (48.7%) 0.001� 3.7 (1.5, 9.3) 35 4 (21.1%) 14 (87.5%) 18 (51.4%) <0.001� 6.6 (1.5, 29.1)

>75th Percentile 39 1 (4.8%) 8 (44.4%) 9 (23.1%) 0.006� 2.7 (1.5, 4.7) 35 1 (5.3%) 8 (50%) 9 (25.7%) 0.005� 2.9 (1.5, 5.4)

Al

>25th Percentile 54 24 (66.7%) 16 (88.9%) 40 (74.1%) 0.106 2.8 (0.7, 10.8) 48 23 (71.9%) 14 (87.5%) 37 (77.1%) 0.293 2.1 (0.6, 7.9)

>50th Percentile 54 14 (38.9%) 13 (72.2%) 27 (50%) 0.042� 2.6 (1.1, 6.3) 48 12 (37.5%) 12 (75%) 24 (50%) 0.030� 3.0 (1.1, 8.1)

>75th Percentile 54 5 (13.9%) 9 (50%) 14 (25.9%) 0.008� 2.9 (1.4, 5.8) 48 5 (15.6%) 9 (56.3%) 14 (29.2%) 0.006� 3.1 (1.4, 6.8)

V

>25th Percentile 22 13 (72.2%) 4 (100%) 17 (77.3%) 0.535 3.0 (1.3, 7.1)± 17 11 (78.6%) 3 (100%) 14 (82.4%) 1.000 1.9 (0.8, 4.5)±

>50th Percentile 22 8 (44.4%) 3 (75%) 11 (50%) 0.586 3.0 (0.4, 25.8) 17 6 (42.9%) 3 (100%) 9 (52.9%) 0.206 6.3 (0.4, 15.4)±

>75th Percentile 22 3 (16.7%) 3 (75%) 6 (27.3%) 0.046� 3.0 (1.3, 7.2) 17 2 (14.3%) 3 (100%) 5 (29.4%) 0.015� 15.2 (6.3, 36.8)±

�Statistically significant at p<0.05.
±Because complete separation was observed, a correction (+ 0.5 to each cell frequency) was utilized to obtain RR estimate.

https://doi.org/10.1371/journal.pone.0240988.t004

PLOS ONE Trace elements and Mesoamerican Nephropathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0240988 November 10, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0240988.t003
https://doi.org/10.1371/journal.pone.0240988.t004
https://doi.org/10.1371/journal.pone.0240988


whose toenail Ni concentration was 0.48 mg/kg; and (2) a 32-year old male, diagnosed with stage

3 CKD after 16 months, whose toenail Ni concentration was 0.24 mg/kg (Table 5).

Discussion

Several hypotheses on the etiology of MeN exist, most notably: excessive or repeated heat

stress coupled with dehydration, exposure to toxic agrochemicals, overuse of nephrotoxic

Fig 2. Relationship between toenail nickel concentrations (log10-mg/kg dry nail mass) and select physiologic parameters.

https://doi.org/10.1371/journal.pone.0240988.g002
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medications, homemade alcohol consumption, traditional/healing herbs, infection, and expo-

sure to nephrotoxic heavy metals. No one hypothesis is yet sufficiently substantiated. We pre-

viously surmised that the clinical and epidemiologic characteristics of MeN suggest an

underlying origin involving, at least in part, exposure to an exogenous, pro-inflammatory

agent, most likely from an environmental source [12–14].

Table 5. Characteristics of subjects who developed CKD of unknown etiology.

Case 1 Case 2

Sex Male Male

Age (years) 30.6 33.1

Month of Acute

Presentation

June 2016 April 2017

Occupation Seasonal sugarcane seed cutter; not

working in the 1 month prior

Seasonal sugarcane seed cutter; working

in the 1 month prior

Healthy Baseline

Creatinine (mg/dL) 1.2 1.3

Hematocrit (%) Unknown� 42

Hemoglobin (g/dL) Unknown� Unknown�

Leukocytes (cells/mm3) Unknown� Unknown�

Acute Presentation

Creatinine (mg/dL) 1.4 2.97

Hematocrit (%) 32.0 31.3

Hemoglobin (g/dL) Unknown� 10.4

Leukocytes (cells/mm3) Unknown� 10400

AKI Stage AKIN criteria not met 2

Number of Days from

Baseline to

Acute Visit 30 97

Number of Days from

Acute to

CKD Diagnosis 508 93

CKD Stage 3 3

Concentration of Trace Element in Toenail (mg/kg)

Nickel 0.24 0.48

Aluminum 62.64 30.47

Vanadium 0.20 <MDL

Manganese 1.63 1.36

Iron 81.89 15.46

Cobalt <MDL 0.02

Copper 4.98 3.06

Zinc 134.62 72.11

Arsenic 0.11 <MDL

Selenium 0.84 <MDL

Cadmium <MDL <MDL

Mercury 0.12 0.13

Lead 0.06 <MDL

Uranium <MDL <MDL

Chromium 0.42 <MDL

�Reliance on retrospective review of medical records for clinical parameters resulted in unknown values for

measurements not studied during clinical encounter.

https://doi.org/10.1371/journal.pone.0240988.t005
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This study documents nephrotoxic trace element exposures among agricultural workers in

Nicaragua and provides the first evidence of differential exposure among individuals with

renal injury compared to individuals with healthy renal function. These data suggest that a spe-

cific element, or combination of elements, likely contributes to renal injury in a setting where

MeN is hyperendemic. Specifically, higher concentrations of Ni were observed among renal

patients in this study than in healthy controls from the same population, and an inverse dose-

response relationship was observed between Ni concentrations and renal filtration. Although

Ni exposure, mostly low-level, was also evident in some healthy subjects, this study provides

new, compelling evidence that Ni, even at low doses, is associated with increased risk of renal

injury, systemic inflammation, and anemia–hallmarks of acute MeN.

Several trace elements were detected in this study for which toxic levels have known adverse

health effects, some at higher concentrations than reference values from U.S. and Canadian

populations [19, 21]. In our study, Ni levels exceeded reference ranges in renal patient toenails,

while controls had levels within normal limits; higher concentrations were also noted for Al,

V, Mn, Fe, Cu, As, and Pb. Since V exposure was more common to renal patients, its role in

MeN or other renal insults should also be vetted. The low levels of Se we observed may have

health implications, renal or otherwise, since it is largely considered an essential element that

protects against heavy metal toxicity. Although the effects of mixtures should still be consid-

ered, specific potentially nephrotoxic elements, such as U, As, Cd, Hg, and Pb might be ruled

out at this stage.

Drastic drops in creatinine clearance among renal patients was accompanied by marked

decline in hematocrit levels, despite normal measures in the same subjects only months earlier.

Thus, we observed acute anemia among acute renal patients who were not previously anemic.

In prior reports, 60% of acute MeN were anemic, and anemia predicted CKD progression [12,

13]. Although anemia is often a consequence of renal damage, the acute nature of renal injury,

normal baseline measurements just months prior during the annual screening visit, and lack

of evidence of CKD in our case-patients make it unlikely that the anemia developed over a sub-

stantial period of time. These data reiterate our previous observation of the acute nature of the

anemia [13]. We suppose that an etiologic agent of MeN could injure the kidneys and induce

an anemic state observed both in the early phase of MeN and during MeN CKD [13, 16].

Ni intoxication typically presents as nausea, vomiting, headaches, weakness, and dizziness,

often resembling a mild, flu-like illness [22]. Major consequences of Ni intoxication remain

poorly described, but animal studies reflect anemia, injury to kidneys or liver, immune and

biochemical dysregulation, and increased mortality; in utero exposures were associated with

reduced growth and development, including small kidneys and impaired development of

immune and other important processes [22–28]. Physiologic damage primarily involves gener-

ation of harmful reactive oxygen species, modifications to gene expressions, and modulation

or inhibition of metabolic pathways. Ni also causes direct damage to DNA, inhibits repair sys-

tems, and prevents methylation. It injures tissues through cytotoxicity, indirect damage (nota-

bly, to renal tubular epithelial cells), and immune dysregulation, processes known to accelerate

renal disease and increase risk of ESRD through chronic exposures and repeat injury [29–31].

Still, surprisingly little is known about long-term effects of Ni on human kidneys or health sta-

tus, and evidence regarding low-dose, repeat, or chronic exposure or in combination with

other exposures, is lacking.

The kidney accumulates excess metal ions through reabsorption, and in the setting of repeat

or chronic exposures, even when the exposure level is low, the potential for renal injury is con-

siderable [32]. Once damaged, increased susceptibility to further insult can accelerate loss of

renal mass and function, leading to rapidly progressing and severe disease [31, 33]. In particu-

lar, the kidney is the primary target organ for Ni accumulation, and a link between Ni exposure
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and end-stage renal disease has already been described [25, 31]. Ni exposed renal tissue reveals

tubular injury with interstitial inflammation and focal damage concentrated at the corticome-

dullary junction [24, 25] which is consistent with our findings on biopsy of acute MeN cases

[14].

Clinical observations of acute MeN bear remarkable similarity to those of Ni intoxication–

namely, flu-like illness with leukocytosis, neutrophilia, lymphopenia, and anemia, accompa-

nied by tubular interstitial nephritis with immune cell infiltrate focused about the corticome-

dullary junction [12–14, 22, 34]. The higher risk of Ni exposure with younger age in this study

is also consistent with the young age at which acute (median 28 years) and chronic (median 32

years) MeN is observed [13]. Since we leveraged an occupational cohort for this investigation,

we did not assess exposure or disease in children or adolescents. There is a real need for studies

in children and also women, since consequences of fetal Ni exposure may impact susceptibility

to MeN [22]. The clinical and epidemiologic parallels between Ni intoxication and the early

stages of MeN gleaned from this study and others may point to Ni as an important and unrec-

ognized cause of kidney disease in this region, and exposure effects should be thoroughly

investigated in the pathway to MeN.

Ni is an abundant, naturally occurring element. Chronic or recurrent exposure to Ni can

arise from either anthropogenic or geogenic sources, and most exposures occur through inci-

dental ingestion, via Ni-enriched water (e.g. surface or ground water), food, or soil. Few expo-

sure mechanisms could explain a widespread, yet geographically mosaic, environmental

distribution. Unique geomorphologic, hydrogeologic, and topographic features of the Pacific

region of Nicaragua and neighboring countries include mantle rocks and magma pockets rich

in certain elements, including Ni [35–37]. Moved by mantle shifts, over time, Ni and Ni-bear-

ing minerals in the region have been pushed closer to the earth’s surface. Through both natural

means (e.g. weathering, erosion, and volcanic activity) and human activities (e.g. mining, well-

digging, and irrigation), mineral sediments can be repositioned into the human environment.

Minerals could reasonably be expected to leach into drinking water, creating an broad expo-

sure source in the nearby communities [22]. Natural depositional processes, such as air and

water flow, can act to concentrate sediments in certain locales, where individuals with heavy

or repeated exposures to Ni-rich soil and water would have higher doses and/or frequencies

than elsewhere or than individuals without such contact. Agricultural field laborers, miners,

and brick-makers have the highest risk of MeN [11]. Importantly, while evidence exists that

MeN is more frequent among certain occupational activities, no occupational exposure source

has yet been identified. Herein, we suggest that the exposure source must be widely distrib-

uted, and exposure intensity and frequency depend on various factors (e.g. geography, contact

type, water source, water consumption). If Ni exposure is involved in the genesis of MeN, a

geologic source is the most plausible origin. The unique mineralogic features of the region,

likely dispersal patterns that overlay with MeN regions, and clinico-epidemiologic evidence

support the plausibility of this hypothesis [35, 36, 38].

There are several limitations to our study that are worth discussing. Although we made

every effort to correctly classify cases and controls, unknown renal events are a possibility that

could influence case or control misclassification. Likewise, with a lack of consensus on the case

definition of MeN in the early stages, we cannot be absolutely certain that all renal cases in our

study are definitely MeN, nor that we can extrapolate our data to asymptomatic or mild MeN

cases who do not seek care. However, the clinical presentation of case-patients in this analysis

are consistent with those in prior studies, including cases who later developed MeN CKD. Fol-

low-up of this cohort will confirm if additional subjects develop CKD attributed to MeN and

confirm if Ni exposure contributes to disease or its progression. Toenail from one control par-

ticipant reflected high Ni concentration, yet no acute nor historical renal impairment was
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noted; it is unknown if any controls had undetected renal events or endured exposure without

clinical consequence. It is important to consider that even exposed individuals may not be sus-

ceptible to injury or may have only mild or subclinical responses. Similarly, low dose, infre-

quent, or brief exposures may not elicit physiologic response in all individuals. It will be

important to understand more about underlying host susceptibility factors (e.g. genetic,

immune, nutritional, hydration status, etc), including gene-environmental interactions, that

could be involved in the initiation and progression of MeN.

Validated biomarkers of Ni exposure and of MeN do not yet exist. Toenail concentrations

reflect accumulated exposure, though metabolism and accumulation may be influenced by

unmeasured variables. As such, nail concentrations do not perfectly reflect exposures within a

discreet, known window of time, and thus we did not directly measure element concentrations

at the exact, unknown moment of exposure. To detect trace minerals in toenails, it is impor-

tant to collect specimens at least 3 months following suspected exposure to allow for growth of

the nail so that detection is optimized. Other factors (e.g. exposure dose or duration, growth

rate of individuals’ nails, mass of nails collected) could affect our use of a 3-month post-expo-

sure measurement in capturing very recent, brief-acute or longer-term exposures. While these

case-patients had normal baseline renal function and lacked a history of long-standing renal

disease, we cannot completely rule out reverse causation in this cohort, with Ni accumulation

occurring secondary to AKI as a result of decreased GFR. To help rule out reverse causation,

future studies should include controls from the same geographic region with AKI or CKD con-

firmed to be related to other causes. Nevertheless, existing data on in nickel clearance help sup-

port our findings [39]. Finally, detection of certain elements may be limited in specimens of

low mass (i.e. the probability of detection decreases in lower mass nail clippings), and many

specimens in our study were small (although not differentially so between cases and controls).

Despite these potential limitations, nails are a useful and validated tool for fingerprinting occu-

pational and other environmental exposures to trace elements and assessing the exposure

dose, and our methods are expected to reliably capture exposures, even low doses, over a prior

3–12 month period [34, 40–42]. Our use of toenails as a marker of exposure history in a closely

followed, well-documented cohort of acute MeN is an important strength of this study, and

this analysis provides important new insight into exposures using the most diverse panel of

trace elements so far in the study of MeN.

Achieving additional insight into the underlying cause of MeN is an enormous milestone in

curbing the epidemic. At this stage, further exposure analyses and environmental sampling in

the community-at-large are urgently needed to evaluate the role of Ni and other elements in

disease. There is an immediate need to (1) measure trace-element toxicity in a large sample of

individuals with acute MeN in order to ensure adequate sample size and power, (2) determine

if areas with high concentrations in the environment to which people may be exposed corre-

spond to known MeN hotspots, and (3) confirm the exposure source and pathway to better

understand risk and devise public health interventions. Ongoing investigation and analysis of

environmental specimens and geochemical processes across this region will confirm the ori-

gin, geographic reach, environmental transmission dynamics, and exposure pathway of the

toxicant, informing remediation and prevention efforts. It will also be important to understand

epigenetic consequences of exposure, assess effects of environmental mixtures and interac-

tions, and determine if exposures during childhood drive this disease in young adulthood. For-

tunately, strategies to treat and prevent metal intoxications are largely accessible; if Ni toxicity

is proved to be a catalyst of MeN, treatment algorithms (e.g. chelation) and exposure-reducing

interventions (e.g. public health measures, environmental remediation, or clean water provi-

sion in heavy labor settings) for high-risk communities, can be rapidly implemented and mon-

itored. Interrupting the pathway to acute renal toxicity and thereby reducing the high renal
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morbidity and mortality in this region will curb this decades-long epidemic mystery, improv-

ing health and well-being across Mesoamerica.
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