13 research outputs found

    Next generation of mascot nano-landers for the multiple neo rendezvous mission: A self-transferring lander for the ’Sousveillance' of NEOs for space exploration, planetary defence or resource utilisation

    Get PDF
    This is an exciting time for Near-Earth Object (NEO) Exploration as we get closer to finding answers to many important questions on how the Solar System was formed, how life arrived on Earth and how the vastly unknown Small Solar System Bodies (SSSBs) behave. In the next three years we will see the return of asteroid samples by the HAYABUSA2 and the OSIRIS-REx missions and the launch of the NEA SCOUT, PSYCHE, LUCY, DART and HERA missions. Yet the NEA classifications are not exhaustive and each new asteroid provides its unique challenges. Thus, an on-site study via nano-landers has multi-fold advantages as they can provide a detailed scientific analysis and can lay the foundation for In-situ Resource Utilisation (ISRU) missions by the selection and geo-spatial mapping of the target site and by the testing of the relevant technology demonstration. Until now nano-landers have been deployed from an altitude of 40-100 meters. This paper aims to exploit the high vantage point of small spacecraft technology to study micro-gravity bodies by proposing a self-transferring, highly integrated nano-lander that can be deployed at ten to hundred-fold higher altitudes than before. It is a successor of MASCOT - the DLR-CNES nano-lander aboard HAYABUSA2 that successfully operated on (162173) Ryugu in 2018. An exciting prospect for future MASCOTs is a Multiple-NEO Rendezvous (MNR) mission by a Solar-Sailing spacecraft. A previous GOSSAMER based study proves the feasibility of a ten-year mission that could deploy five MASCOTs to five asteroids in hundred days. This paper goes one step further and equips the nano-landers with minimalistic self-transfer GNC and Propulsion systems thereby enhancing the multiple target mission returns while conforming to the nano-spacecraft's system design constraints. Additionally, a software-in-the-loop mission design and a Monte Carlo sensitivity analysis have been done to prove its capability to land on the moon of binary asteroid systems that are critical target bodies for the development of planetary defence technology. The proposed MASCOT-variant can have a customised payload for individual target bodies. This system can hence pave way to a new generation of intelligent yet simple landers that can help in all the fields of NEO studies such as reconnaissance missions preceding human exploration or asteroid mining missions. Looking at how many extra miles a self-transfer MASCOT could scout ahead, the mission parameters are outlined for an added in-situ exploration capability which is simultaneously relaxing the requirements on and de-risking the operations of its main spacecraft

    This is what a MASCOT can do for you - at Apophis

    Get PDF
    In a similarly brief event some 10½ years before Apophis' fly-by on Friday, April 13th, 2029, the Mobile Asteroid Surface Scout, MASCOT, successfully completed its 17-hours mission on the ~km-sized C-type potentially hazardous asteroid (162173) Ryugu. Investigating the surface and its thermal properties, looking for a magnetic field, and imaging the stark landscapes of this dark rubble pile, it contributed valuable close-up information before the surface sampling by its mothership, HAYABUSA2. We outline the capabilities of the asteroid nanolanders MASCOT, MASCOT2, and the options for optimized MASCOT@Apophis designs in particular for small spacecraft rendezvous missions to Apophis

    Low-thrust: the fast & flexible path to Apophis

    Get PDF
    By the time of Apophis' fly-by on Friday, April 13th, 2029, more satellites than have ever been launched since the beginning of the space age to this day will reach low Earth orbit (LEO). Almost all of them will be microsatellites of less than ~250 kg equipped with solar-electric propulsion (SEP). We propose the use of already created low-thrust trajectories to Apophis to help advance design trades in the early study phases of missions to Apophis. It appears that small spacecraft missions could benefit from solar-electric or sail propulsion

    More Bucks for the Bang: New Space Solutions, Impact Tourism and one Unique Science & Engineering Opportunity at T-6 Months and Counting

    Get PDF
    For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!) asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness) would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fastpaced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science

    Flights Are Ten a Sail – Re-use and Commonality in the Design and System Engineering of Small Spacecraft Solar Sail Missions with Modular Hardware for Responsive and Adaptive Exploration

    Get PDF
    The exploration of small solar system bodies started with fast fly-bys of opportunity on the sidelines of missions to the planets. The tiny new worlds seen turned out to be so intriguing and different from all else(and each other) that dedicated sample-return and in-situ analysis missions were developed and launched. Through these, highly efficient low-thrust propulsion expanded from commercial use into mainstream and flagship science missions, there in combination with gravity assists. In parallel, the growth of small spacecraft solutions accelerated in numbers as well as individual spacecraft capabilities. The on-going missions OSIRIS-REx (NASA) or Hayabusa2 (JAXA) with its landers MINERVA-II and MASCOT, and the upcoming NEA scout mission are examples of this synergy of trends. The continuation of these and other related developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration emerges in the form of small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules. These address the needs of all asteroid user communities– planetary science, planetary defence, and in-situ resource utilization – as well as other fields of solar system science and applications such as space weather warning and solar observations. Already the DLR-ESTEC GOSSAMER Roadmap for Solar Sailing initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter(SPO) delivery, which demonstrate the capabilities of near-term solar sails to reach any kind of orbit in the inner solar system. This enables Multiple Near-Earth Asteroid (NEA) rendezvous missions (MNR),from Earth-coorbital to extremely inclined and even retrograde target orbits. For these mission types using separable payloads, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the targets visited and enable multiple NEA sample-return missions. These nanospacecraft scale components are an ideal match creating solar sails in micro-spacecraft format whose launch configurations are compatible with secondary payload platforms such as ESPA and ASAP. The DLR GOSSAMER solar sail technology builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m) solar sail at DLR Cologne in 1999 and in the 20 years since

    MASCOT Follow-on Mission Concept Study with Enhanced GNC and Propulsion Capability of the Nano-lander for Small Solar System Bodies (SSSB) Missions

    No full text
    This thesis describes the design, implementation and analysis for a preliminary study for DLR's MASCOT lander's next mission to Small Solar System Bodies (SSSB). MASCOT (Mobile Asteroid Surface Scout) is a nano-lander that flew aboard Hayabusa2 (JAXA) to an asteroid, Ryugu. It is a passive nano-spacecraft that can only be deployed ballistically from a hovering spacecraft. Current research focusses on optimizing similar close-approach missions for deploying landers or small cubesats into periodic orbits but does not provide solutions with semi-autonomous small landers deployed from farther distances. This study aims to overcome this short-coming by proposing novel yet simple Guidance, Navigation and Control (GNC) and Propulsion systems for MASCOT. Due to its independent functioning and customisable anatomy, MASCOT can be adapted for several mission scenarios. In this thesis, a particular case-study is modelled for the HERA (ESA) mission. The first phase of the study involves the design of a landing trajectory to the moon of the Didymos binary asteroid system. For a preliminary analysis, the system - Didymain (primary body), Didymoon (secondary body) and MASCOT (third body) - are modelled as a Planar Circular Restricted Three Body Problem (PCR3BP). The numerical integration methodology used for the trajectory is the variable-step Dormand-Prince (Runge Kutta) ODE-4,5 (Ordinary Differential Equation) solver. The model is built in MATLAB-Simulink (2019a) and refined iteratively by conducting a Monte Carlo analysis using the Sensitivity Analysis Tool. Two models - a thruster-controlled system and an alternative hybrid propulsion system of solar sails and thrusters - are simulated and proven to be feasible. The results show that the stable manifold near Lagrange 2 points proposed by Tardivel et. al. for ballistic landings can still be exploited for distant deployments if a single impulse retro-burn is done at an altitude of 65 m to 210 m above ground with error margins of 50 m in position, 5 cm/s in velocity and 0.1 rad in attitude. The next phase is the conceptual design of a MASCOT-variant with GNC abilities. Based on the constraints and requirements of the flown spacecraft, novel GNC and Propulsion systems are chosen. To identify the overriding factors in using commercial-off-the-shelf (COTS) for MASCOT, a market survey is conducted and the manufacturers of short-listed products are consulted. The final phase of the study is to analyse the proposed equipment in terms of parameter scope and capability-oriented trade-offs. Two traceability matrices, one for devised solutions and system and another for solutions versus capabilities, are constructed. The final proposed system is coherent with the given mass, volume and power constraints. A distant deployment of MASCOT-like landers for in-situ observation is suggested as an advantageous and risk-reducing addition to large spacecraft missions to unknown micro-gravity target bodies. Lastly, the implications of this study and the unique advantages of an enhanced MASCOT lander are explored for currently planned SSSB missions ranging from multiple rendezvous, fly-by or sample-return missions. Concluding, this study lays the foundation for future work on advanced GNC concepts for unconventional spacecraft topology for the highly integrated small landers

    Gravimetric Satellite Measurement Corrections with EOT20 Tidal Models

    No full text
    The need to better quantify and monitor Climate Change (CC) is crucial for scientists and decision-makers alike to take timely actions to prevent irreversible damage. Space-based Earth Observation (EO) missions, such as the GRACE Follow-On (FO) Mission, play an irreplaceable role in understanding climate change. Observational data on environmental damages, such as the drastic changes in terrestrial water cycles, sea-level, and mass balance of ice sheets and glaciers, require higher temporal and spatial resolution in gravimetric measurements. To achieve this, the Relativistic Modelling Department at the DLR Institute of Satellite Geodesy and Inertial Sensing, aims to provide a Digital Twin for future EO Missions with higher resolution satellite simulations. Therefore, DLR and ZARM (University of Bremen) have developed the Hybrid Simulation Platform for Space Systems (HPS) to analyse emerging space technologies. This software includes disturbance forces on the satellite such as solar, albedo, and infrared radiation and aerodynamic drag. We aim to add some time-varying effects such as the oceanic tides, oceanic pole tides and the solid earth tides. This paper focuses on the current research status in the implementation of two empirical tidal models by DGFITUM - EOT11a (Empirical Ocean Tide 2011) and EOT20 (Empirical Ocean Tide 2020) to simulate the ocean tide effects on the satellite attitude and orbit. EOT20 provides 17 tidal coefficients in a spatial resolution of a 0.125degree grid using multi-satellite mission data from 1992 to 2018 and the FES2014 (Finite Element Solution 2014) as the reference oceanic tide model. In the future, the simulated satellite acceleration applying EOT20 is compared to those that are calculated incorporating EOT11a and the measurement data such as from GRACE-FO. Thus, Digital Twins of space-based technology provide data that helps to generate a more accurate model of the Earth and help tackle climate change

    Flights are ten a sail - Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration

    No full text
    The exploration of small solar system bodies started with fast fly-bys of opportunity on the sidelines of missions to the planets. The tiny new worlds seen turned out to be so intriguing and different from all else (and each other) that dedicated sample-return and in-situ analysis missions were developed and launched. Through these, highly efficient low-thrust propulsion expanded from commercial use into mainstream and flagship science missions, there in combination with gravity assists propulsion. In parallel, the growth of small spacecraft solutions accelerated in numbers as well as individual spacecraft capabilities. The on-going missions OSIRIS-REX (NASA) or HAYABUSA2 (JAXA) with its landers MINERVA-II and MASCOT, and the upcoming NEASCOUT mission are examples of this synergy of trends. The continuation of these and other related devlopments towards a propellant-less and highly efficient class of spacecraft for solar system exploration emerges in the form of small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules. These address the needs of all asteroid user communities - planetary science, planetary defence, and in-situ resource utilization - as well as other fields of solar system science and applications such as space weather warning and solar observations. Already the DLR-ESTEC GOSSAMER Roadmap for Solar Sailing initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery, which demonstrate the capabilities of near-term solar sails to reach any kind of orbit in the inner solar system. This enables Multiple Near-Earth Asteroid (NEA) rendezvous missions (MNR), from Earth-coorbital to extremely inclined and even retrograde target orbits. For these mission types using separable payloads, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the targets visited and enable multiple NEA sample-return missions. These nanospacecraft scale components are an ideal match creating solar sails in micro-spacecraft format whose launch configurations are compatible with secondary payload platforms such as ESPA and ASAP. The DLR GOSSAMER solar sail technology builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2 solar sail at DLR Cologne in 1999 and in the 20 years since.</p

    Flights are ten a sail - Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration

    No full text
    The exploration of small solar system bodies started with fast fly-bys of opportunity on the sidelines of missions to the planets. The tiny new worlds seen turned out to be so intriguing and different from all else (and each other) that dedicated sample-return and in-situ analysis missions were developed and launched. Through these, highly efficient low-thrust propulsion expanded from commercial use into mainstream and flagship science missions, there in combination with gravity assists propulsion. In parallel, the growth of small spacecraft solutions accelerated in numbers as well as individual spacecraft capabilities. The on-going missions OSIRIS-REX (NASA) or HAYABUSA2 (JAXA) with its landers MINERVA-II and MASCOT, and the upcoming NEASCOUT mission are examples of this synergy of trends. The continuation of these and other related devlopments towards a propellant-less and highly efficient class of spacecraft for solar system exploration emerges in the form of small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules. These address the needs of all asteroid user communities - planetary science, planetary defence, and in-situ resource utilization - as well as other fields of solar system science and applications such as space weather warning and solar observations. Already the DLR-ESTEC GOSSAMER Roadmap for Solar Sailing initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery, which demonstrate the capabilities of near-term solar sails to reach any kind of orbit in the inner solar system. This enables Multiple Near-Earth Asteroid (NEA) rendezvous missions (MNR), from Earth-coorbital to extremely inclined and even retrograde target orbits. For these mission types using separable payloads, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the targets visited and enable multiple NEA sample-return missions. These nanospacecraft scale components are an ideal match creating solar sails in micro-spacecraft format whose launch configurations are compatible with secondary payload platforms such as ESPA and ASAP. The DLR GOSSAMER solar sail technology builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2 solar sail at DLR Cologne in 1999 and in the 20 years since.Astrodynamics & Space Mission
    corecore