75 research outputs found

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Late-onset hereditary axonal neuropathies

    No full text
    Background: Hereditary motor-sensory neuropathy or the Charcot-Marie-Tooth syndrome is known to represent considerable genetic heterogeneity. Onset is usually in childhood, adolescence, or young adulthood. The objective of this study was to define late-onset forms of the disorder. Methods: A clinical and genetic study of families with uniformly late onset of peripheral neuropathy was performed in a university neurogenetics setting. Results: Six families were identified with consistently late onset of a primarily axonal neuropathy. Median age at symptom onset was 57 years (range 35-85 years) of a mixed motor and sensory neuropathy with electrophysiologic characteristics of an axonal rather than demyelinating condition. There was a possible association with deafness. Two families showed autosomal dominant inheritance whereas four families had only one affected generation with an excess of males. An extensive mutation screen of nine genes known to cause Charcot-Marie-Tooth was negative. Conclusion: There are late-onset forms of hereditary axonal neuropathies. The genetic causes remain unknown and genetic heterogeneity within this entity is likely

    Non-recurrent SEPT9 duplications cause hereditary neuralgic amyotrophy.

    No full text
    Item does not contain fulltextBACKGROUND: Genomic copy number variants have been shown to be responsible for multiple genetic diseases. Recently, a duplication in septin 9 (SEPT9) was shown to be causal for hereditary neuralgic amyotrophy (HNA), an episodic peripheral neuropathy with autosomal dominant inheritance. This duplication was identified in 12 pedigrees that all shared a common founder haplotype. METHODS AND RESULTS: Based on array comparative genomic hybridisation, we identified six additional heterogeneous tandem SEPT9 duplications in patients with HNA that did not possess the founder haplotype. Five of these novel duplications are intragenic and result in larger transcript and protein products, as demonstrated through reverse transcription-PCR and western blotting. One duplication spans the entire SEPT9 gene and does not generate aberrant transcripts and proteins. The breakpoints of all the duplications are unique and contain regions of microhomology ranging from 2 to 9 bp in size. The duplicated regions contain a conserved 645 bp exon within SEPT9 in which HNA-linked missense mutations have been previously identified, suggesting that the region encoded by this exon is important to the pathogenesis of HNA. CONCLUSIONS: Together with the previously identified founder duplication, a total of seven heterogeneous SEPT9 duplications have been identified in this study as a causative factor of HNA. These duplications account for one third of the patients in our cohort, suggesting that duplications of various sizes within the SEPT9 gene are a common cause of HNA.1 september 201

    Genomic organization and mutation analysis of three candidate genes for hereditary neuralgic amyotrophy

    No full text
    Hereditary neuralgic amyotrophy (HNA) is an autosomal-dominant inherited recurrent focal neuropathy affecting mainly the brachial plexus. In this study we report the genomic structure and mutation analysis of three candidate genes: sphingosine kinase 1 (SPHK1); tissue inhibitor of metalloproteinase 2 (TIMP2); and cytoglobin (CYGB). We did not find any disease-associated mutations, indicating that HNA is not caused by point mutations in these genes. However, we identified several sequencing errors in the cDNA of SPHK1 as well as seven novel single-nucleotide polymorphisms

    Comparative in vitro effects of closantel and selected beta-ketoamide anthelmintics on a gastrointestinal nematode and vertebrate liver cells

    No full text
    PNU-87407 and PrNU-88509, beta-ketoamide anthelmintics that are structurally related to each other and to the salicylanilide anthelmintic closantel, exhibit different anthelmintic spectra and apparent toxicity in mammals, The basis for this differential pharmacology was examined in experiments that measured motility and adenosine triphosphate (ATP) levels in larval and adult stages of the gastrointestinal nematode, Haemonchus contortus, and in a vertebrate liver cell line and mitochondria, PNU-87407 and PNU-88509 both exhibited functional cross-resistance with closantel in larval migration assays using closantel-resistant and -sensitive isolates of H, contortus. Each compound reduced motility and,ATP levels in cultured adult H. contortus in a concentration- and time-dependent manner: however, motility was reduced more rapidly by PNU-88509, and ATP levels were reduced by lower concentrations of closantel than the beta-ketoamides. Tension recordings from segments of adult H, contortus showed that PNU-88509 induces spastic paralysis, while PNU-87407 and closantel induce flaccid paralysis of the somatic musculature. Marked differences in the actions of these compounds were also observed in the mammalian preparations. In Chang liver cells, ATP levels were reduced after 3 h exposures to greater than or equal to 0.25 mu M PNU-87407 1 mu M closantel or 10 mu M PNU-88509, Reductions in ATP caused by PNU-88509 were completely reversible, while the effects of closantel and PNU-87407; were irreversible. PNU-87407, closantel and PNU-88509 uncoupled oxidative phosphorylation in isolated rat liver mitochondria, inhibiting the respiratory control index (with glutamate or succinate as substrate) by 50% at concentrations of 0.14, 0.9 and 7.6 mu M respectively

    The heavy metal-responsive transcription factor-1 (MTF-1) is not required for neural differentiation.

    Full text link
    The zinc finger transcription factor MTF-1 is essential for proper response to heavy metal load and other stress conditions in vertebrates, and also contributes to the maintenance of the cellular redox state. Target genes include metallothioneins (MT-I and MT-II) and gamma-glutamylcysteine synthetase (gamma-GCS), an enzyme involved in glutathione biosynthesis. Although MTF-1 is expressed ubiquitously, the primary defect in null mutant mice is hepatocyte necrosis, which results in embryonic lethality around day E14 and prevents the analysis of delayed effects on other organs. To assess the impact of MTF-1 deficiency on the function of the mature central nervous system, we employed the neural grafting strategy. Neuroectodermal brain tissue obtained from transgenic mouse embryos at gestational day 12.5 was transplanted into the caudoputamen of adult wild-type mice. 33 days later, grafts derived from MTF-1 deficient mice consisted of fully differentiated neuroectodermal tissue and showed no differences to heterozygous control grafts. This indicates that MTF-1 is dispensable for the development and differentiation of the nervous system. Such transplants devoid of MTF-1 may provide a useful tool for the further investigation of the effect of cell stress, including oxidative stress
    • …
    corecore