2,412 research outputs found

    Identifying Irrigated Areas in the Snake River Plain, Idaho: Evaluating Performance Across Composting Algorithms, Spectral Indices, and Sensors

    Get PDF
    There are pressing concerns about the interplay between agricultural productivity, water demand, and water availability in semi-arid to arid regions of the world. Currently, irrigated agriculture is the dominant water user in these regions and is estimated to consume approximately 80% of the world’s diverted freshwater resources. We develop an improved irrigated land-use mapping algorithm that uses the seasonal maximum value of a spectral index to distinguish between irrigated and non-irrigated parcels in Idaho’s Snake River Plain. We compare this approach to two alternative algorithms that differentiate between irrigated and non-irrigated parcels using spectral index values at a single date or the area beneath spectral index trajectories for the duration of the agricultural growing season. Using six different pixel and county-scale error metrics, we evaluate the performance of these three algorithms across all possible combinations of two growing seasons (2002 and 2007), two datasets (MODIS and Landsat 5), and three spectral indices, the Normalized Difference Vegetation Index, Enhanced Vegetation Index and Normalized Difference Moisture Index (NDVI, EVI, and NDMI). We demonstrate that, on average, the seasonal-maximum algorithm yields an improvement in classification accuracy over the accepted single-date approach, and that the average improvement under this approach is a 60% reduction in county scale root mean square error (RMSE), and modest improvements of overall accuracy in the pixel scale validation. The greater accuracy of the seasonal-maximum algorithm is primarily due to its ability to correctly classify non-irrigated lands in riparian and developed areas of the study region

    The Unique OMI HCHO/NO2 Feature During the 2008 Beijing Summer Olympics: Implications for Ozone Production Sensitivity

    Get PDF
    In preparation of the Beijing Summer Olympic and Paralympics Games, strict controls were imposed between July and September 2008 on motor vehicle traffic and industrial emissions to improve air quality for the competitors. We assessed chemical sensitivity of ozone production to these controls using Ozone Monitoring Instrument (OMI) column measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2), where their ratio serves as a proxy for the sensitivity. During the emission controls, HCHO/NO2 increased and indicated a NOx-limited regime, in contrast to the same period in the preceding three years when the ratio indicates volatile organic carbon (VOC)-limited and mixed NOx-VOC-limited regimes. After the emission controls were lifted, observed NO2 and HCHO/NO2 returned to their previous values. The 2005-2008 OMI record shows that this transition in regimes was unique as ozone production in Beijing was rarely NOx-limited. OMI measured summertime increases in HCHO of around 13% in 2008 compared to prior years, the same time period during which MODIS vegetation indices increased. The OMI HCHO increase may be due to higher biogenic emissions of HCHO precursors, associated with Beijing's greening initiative for the Olympics. However, NO2 and HCHO were also found to be well-correlated during the summer months. This indicates an anthropogenic VOC contribution from vehicle emissions to OMI HCHO and is a plausible explanation for the relative HCHO minimum observed in August 2008, concurrent with a minimum in traffic emissions. We calculated positive trends in 2005-2008 OMI HCHO and NO2 of about +1 x 10(exp 14) Molec/ square M-2 and +3 x 10(exp 13) molec CM-2 per month, respectively. The positive trend in NO2 may be an indicator of increasing vehicular traffic since 2005, while the positive trend in HCHO may be due to a combined increase in anthropogenic and biogenic emissions since 2005

    Spontaneous emission of an atom placed near a nanobelt of elliptical cross-section

    Get PDF
    Spontaneous emission of an atom (molecule) placed near a nanocylinder of elliptical cross-section of an arbitrary composition is studied. The analytical expressions have been obtained for the radiative and nonradiative channels of spontaneous decay and investigated in details.Comment: 35 pages, 11 figure

    Bi-stable tunneling current through a molecular quantum dot

    Get PDF
    An exact solution is presented for tunneling through a negative-U d-fold degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy of the negative-U dot is larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a result of attractive electron correlations in the molecule, which open up a new conducting channel when the voltage is above the threshold bias voltage V2. Once this current has been established, the extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible realizations of the bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor corrections in the text. To appear in Phys. Rev.

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm2^{-2} sec1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Υ\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low βy\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    Near-threshold production of the multi-strange Ξ\Xi^- hyperon

    Get PDF
    The yield for the multi-strange Ξ\Xi^{-} hyperon has been measured in 6 AGeV Au+Au collisions via reconstruction of its decay products π\pi^{-} and Λ\Lambda, the latter also being reconstructed from its daughter tracks of π\pi^{-} and p. The measurement is rather close to the threshold for Ξ\Xi^{-} production and therefore provides an important test of model predictions. The measured yield for Ξ\Xi^{-} and Λ\Lambda are compared for several centralities. In central collisions the Ξ\Xi^{-} yield is found to be in excellent agreement with statistical and transport model predictions, suggesting that multi-strange hadron production approaches chemical equilibrium in high baryon density nuclear matter.Comment: Submitted to PR

    Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments

    Get PDF
    Momentum widths of the primary fragments and observed final fragments have been investigated within the framework of an Antisymmetrized Molecular Dynamics transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It is found that the secondary evaporation effects cause the values of a reduced momentum width, σ0\sigma_0, derived from momentum widths of the final fragments to be significantly less than those appropriate to the primary fragment but close to those observed in many experiments. Therefore, a new interpretation for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid Communicatio

    Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments

    Get PDF
    Momentum widths of the primary fragments and observed final fragments have been investigated within the framework of an Antisymmetrized Molecular Dynamics transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It is found that the secondary evaporation effects cause the values of a reduced momentum width, σ0\sigma_0, derived from momentum widths of the final fragments to be significantly less than those appropriate to the primary fragment but close to those observed in many experiments. Therefore, a new interpretation for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid Communicatio
    corecore