56,620 research outputs found

    Effects of f(R) Model on the Dynamical Instability of Expansionfree Gravitational Collapse

    Full text link
    Dark energy models based on f(R) theory have been extensively studied in literature to realize the late time acceleration. In this paper, we have chosen a viable f(R) model and discussed its effects on the dynamical instability of expansionfree fluid evolution generating a central vacuum cavity. For this purpose, contracted Bianchi identities are obtained for both the usual matter as well as dark source. The term dark source is named to the higher order curvature corrections arising from f(R) gravity. The perturbation scheme is applied and different terms belonging to Newtonian and post Newtonian regimes are identified. It is found that instability range of expansionfree fluid on external boundary as well as on internal vacuum cavity is independent of adiabatic index Γ\Gamma but depends upon the density profile, pressure anisotropy and f(R) model.Comment: 26 pages, no figure. arXiv admin note: text overlap with arXiv:1108.266

    Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Get PDF
    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance (EPR) gg-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute gg-tensors for the \ce{TiF3} and \ce{CuCl4^2-} complexes, a [2Fe-2S] model of the active center of ferredoxins, and a \ce{Mn4CaO5} model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining gg-tensors in multireference calculations with a large number of open shells.Comment: 19 page

    Radiating Shear-Free Gravitational Collapse with Charge

    Full text link
    We present a new shear free model for the gravitational collapse of a spherically symmetric charged body. We propose a dissipative contraction with radiation emitted outwards. The Einstein field equations, using the junction conditions and an ansatz, are integrated numerically. A check of the energy conditions is also performed. We obtain that the charge delays the black hole formation and it can even halt the collapse.Comment: 22 pages, 9 figures. It has been corrected several typos and included several references. Accepted for publication in GR

    Tensor factorizations of local second-order M{\o}ller Plesset theory

    Get PDF
    Efficient electronic structure methods can be built around efficient tensor representations of the wavefunction. Here we describe a general view of tensor factorization for the compact representation of electronic wavefunctions. We use these ideas to construct low-complexity representations of the doubles amplitudes in local second order M{\o}ller-Plesset perturbation theory. We introduce two approximations - the direct orbital specific virtual approximation and the full orbital specific virtual approximation. In these approximations, each occupied orbital is associated with a small set of correlating virtual orbitals. Conceptually, the representation lies between the projected atomic orbital representation in Pulay-Saeb{\o} local correlation theories and pair natural orbital correlation theories. We have tested the orbital specific virtual approximations on a variety of systems and properties including total energies, reaction energies, and potential energy curves. Compared to the Pulay-Saeb{\o} ansatz, we find that these approximations exhibit favourable accuracy and computational times, while yielding smooth potential energy curves

    Proposed New Test of Spin Effects in General Relativity

    Get PDF
    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernable. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars

    Synchrotron brightness distribution of turbulent radio jets

    Get PDF
    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile

    Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions

    Full text link
    We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically non-degenerate vectors (structures) as protein-like structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of designability-ranking shows that about 1/e of the structures have designabilities above the average, independent on the used model.Comment: 17 pages and 10 figure

    An Efficient Block Circulant Preconditioner For Simulating Fracture Using Large Fuse Networks

    Full text link
    {\it Critical slowing down} associated with the iterative solvers close to the critical point often hinders large-scale numerical simulation of fracture using discrete lattice networks. This paper presents a block circlant preconditioner for iterative solvers for the simulation of progressive fracture in disordered, quasi-brittle materials using large discrete lattice networks. The average computational cost of the present alorithm per iteration is O(rslogs)+delopsO(rs log s) + delops, where the stiffness matrix A{\bf A} is partioned into rr-by-rr blocks such that each block is an ss-by-ss matrix, and delopsdelops represents the operational count associated with solving a block-diagonal matrix with rr-by-rr dense matrix blocks. This algorithm using the block circulant preconditioner is faster than the Fourier accelerated preconditioned conjugate gradient (PCG) algorithm, and alleviates the {\it critical slowing down} that is especially severe close to the critical point. Numerical results using random resistor networks substantiate the efficiency of the present algorithm.Comment: 16 pages including 2 figure
    corecore