48,571 research outputs found
Construction of a cosmic ray air shower telescope
The telescope under construction is mainly for the purpose of locating the arrival directions of energetic particles and quanta which generate air showers of sizes 10 to the 5th power to 10 to the 6th power. Both fast timing method and visual track method are incorporated in determining the arrival directions. The telescope is composed of four stations using scintillators and neon flash tubes as detectors. The system directional resolution is better than 1.5 deg
Measurement of shower electrons and muons using a small air shower array
A small air shower array has been used to measure the size spectrum of air showers at sea level in the size range 6.10 to the 3rd power to 10 to the 6th power. The result fitted with the power law gives an index 2.79 + or - 0.11 for the differential spectrum. Lateral distribution of electrons fitted with the well known NKG function results in an age parameter s = 1.35 for core distances less than 30m and s = 0.8 for longer core distances. Lateral distribution of muons follows the general shape of Greisen's relation but is much higher in intensity. Muon and electron densities at the same observation point are also compared
Profitable Scheduling on Multiple Speed-Scalable Processors
We present a new online algorithm for profit-oriented scheduling on multiple
speed-scalable processors. Moreover, we provide a tight analysis of the
algorithm's competitiveness. Our results generalize and improve upon work by
\textcite{Chan:2010}, which considers a single speed-scalable processor. Using
significantly different techniques, we can not only extend their model to
multiprocessors but also prove an enhanced and tight competitive ratio for our
algorithm.
In our scheduling problem, jobs arrive over time and are preemptable. They
have different workloads, values, and deadlines. The scheduler may decide not
to finish a job but instead to suffer a loss equaling the job's value. However,
to process a job's workload until its deadline the scheduler must invest a
certain amount of energy. The cost of a schedule is the sum of lost values and
invested energy. In order to finish a job the scheduler has to determine which
processors to use and set their speeds accordingly. A processor's energy
consumption is power \Power{s} integrated over time, where
\Power{s}=s^{\alpha} is the power consumption when running at speed .
Since we consider the online variant of the problem, the scheduler has no
knowledge about future jobs. This problem was introduced by
\textcite{Chan:2010} for the case of a single processor. They presented an
online algorithm which is -competitive. We provide an
online algorithm for the case of multiple processors with an improved
competitive ratio of .Comment: Extended abstract submitted to STACS 201
A mini-array for large air showers
A mini-array that utilizes the Linsley effect is proposed for the measurement of large air showers. An estimate of the detectable shower rates for various shower sizes is made. Details of the detection and data collection systems are also described
Space shuttle contamination due to backflow from control motor exhaust
Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given
Spin-dependent tunneling through a symmetric semiconductor barrier: the Dresselhaus effect
Spin-dependent tunneling through a symmetric semiconductor barrier is studied
including the k^3 Dresselhaus effect. The spin-dependent transmission of
electron can be obtained analytically. By comparing with previous work(Phys.
Rev. B 67. R201304 (2003) and Phys. Rev. Lett. 93. 056601 (2004)), it is shown
that the spin polarization and interface current are changed significantly by
including the off-diagonal elements in the current operator, and can be
enhanced considerably by the Dresselhaus effect in the contact regions.Comment: 10 pages, 5 figures, to appear in PR
Topological dilaton black holes
In four-dimensional spacetime, when the two-sphere of black hole event
horizons is replaced by a two-dimensional hypersurface with zero or negative
constant curvature, the black hole is referred to as a topological black hole.
In this paper we present some exact topological black hole solutions in the
Einstein-Maxwell-dilaton theory with a Liouville-type dilaton potential.Comment: 8 pages, Revtex, no figure
Toward RADSCAT measurements over the sea and their interpretation
Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed
Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory
Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity
Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1
Background: In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails, such as Spezyme® CP (Genencor), Acellerase™ 1000 (Genencor), and Celluclast® 1.5L (Novozymes), are ineffectively to release free glucose from the pretreated biomass without additional β-glucosidase. Results: In this study, for the first time, a β-glucosidase DT-Bgl gene (1359 bp) was identified in the genome of Anoxybacillus sp. DT3-1, and cloned and heterologously expressed in Escherichia coli BL21. Phylogenetic analysis indicated that DT-Bgl belonged to glycosyl hydrolase (GH) family 1. The recombinant DT-Bgl was highly active on cello-oligosaccharides and p-nitrophenyl-β-d-glucopyranoside (pNPG). The DT-Bgl was purified using an Ni-NTA column, with molecular mass of 53 kDa using an SDS-PAGE analysis. It exhibited optimum activity at 70 °C and pH 8.5, and did not require any tested co-factors for activation. The K m and V max values for DT-Bgl were 0.22 mM and 923.7 U/mg, respectively, with pNPG as substrate. The DT-Bgl displayed high glucose tolerance, and retained 93 % activity in the presence of 10 M glucose. Conclusions: Anoxybacillus DT-Bgl is a novel thermostable β-glucosidase with low glucose inhibition, and converts long-chain cellodextrins to cellobiose, and further hydrolyse cellobiose to glucose. Results suggest that DT-Bgl could be useful in the development of a bioprocess for the efficient saccharification of lignocellulosic biomass
- …