31,351 research outputs found

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆L\star starburst, and L⋆L\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and L⋆L\star galaxies with constant isotropic diffusion coefficient κ∼3×1029 cm2 s−1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and L⋆L\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Finding diamonds in the rough: Targeted Sub-threshold Search for Strongly-lensed Gravitational-wave Events

    Full text link
    Strong gravitational lensing of gravitational waves can produce duplicate signals separated in time with different amplitudes. We consider the case in which strong lensing produces identifiable gravitational-wave events and weaker sub-threshold signals hidden in the noise background. We present a search method for the sub-threshold signals using reduced template banks targeting specific confirmed gravitational-wave events. We apply the method to all events from Advanced LIGO's first and second observing run O1/O2. Using GW150914 as an example, we show that the method effectively reduces the noise background and raises the significance of (near-) sub-threshold triggers. In the case of GW150914, we can improve the sensitive distance by 2.0%−14.8%2.0\% - 14.8\%. Finally, we present the top 55 possible lensed candidates for O1/O2 gravitational-wave events that passed our nominal significance threshold of False-Alarm-Rate ≤1/30\leq 1/30 days

    IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline

    Get PDF
    Alzheimer’s disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aβ levels and amyloid plaque deposition by promoting the recruitment and Aβ phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1β, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD

    Developmental dyscalculia and low numeracy in Chinese children

    Get PDF
    Children struggle with mathematics for different reasons. Developmental dyscalculia and low numeracy - two kinds of mathematical difficulties - may have their roots, respectively, in poor understanding of exact non-symbolic numerosities and of symbolic numerals. This study was the first to explore whether Chinese children, despite cultural and linguistic factors supporting their mathematical learning, also showed such mathematical difficulties and whether such difficulties have measurable impact on children's early school mathematical performance. First-graders, classified as dyscalculia, low numeracy, or normal achievement, were compared for their performance in various school mathematical tasks requiring a grasp of non-symbolic numerosities (i.e., non-symbolic tasks) or an understanding of symbolic numerals (i.e., symbolic tasks). Children with dyscalculia showed poorer performance than their peers in non-symbolic tasks but not symbolic ones, whereas those with low numeracy showed poorer performance in symbolic tasks but not non-symbolic ones. As hypothesized, these findings suggested that dyscalculia and low numeracy were distinct deficits and caused by deficits in non-symbolic and symbolic processing, respectively. These findings went beyond prior research that only documented generally low mathematical achievements for these two groups of children. Moreover, these deficits appeared to be persistent and could not be remedied simply through day-to-day school mathematical learning. The present findings highlighted the importance of tailoring early learning support for children with these distinct deficits, and pointed to future directions for the screening of such mathematical difficulties among Chinese children. © 2013 Elsevier Ltd.postprin

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,…,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    Magnetic, thermodynamic, and electrical transport properties of the noncentrosymmetric B20 germanides MnGe and CoGe

    Full text link
    We present magnetization, specific heat, resistivity, and Hall effect measurements on the cubic B20 phase of MnGe and CoGe and compare to measurements of isostructural FeGe and electronic structure calculations. In MnGe, we observe a transition to a magnetic state at Tc=275T_c=275 K as identified by a sharp peak in the ac magnetic susceptibility, as well as second phase transition at lower temperature that becomes apparent only at finite magnetic field. We discover two phase transitions in the specific heat at temperatures much below the Curie temperature one of which we associate with changes to the magnetic structure. A magnetic field reduces the temperature of this transition which corresponds closely to the sharp peak observed in the ac susceptibility at fields above 5 kOe. The second of these transitions is not affected by the application of field and has no signature in the magnetic properties or our crystal structure parameters. Transport measurements indicate that MnGe is metal with a negative magnetoresistance similar to that seen in isostructural FeGe and MnSi. Hall effect measurements reveal a carrier concentration of about 0.5 carriers per formula unit also similar to that found in FeGe and MnSi. CoGe is shown to be a low carrier density metal with a very small, nearly temperature independent diamagnetic susceptibility.Comment: 16 pages 23 figure

    Universality class of the restricted solid-on-solid model with hopping

    Full text link
    We study the restricted solid-on-solid (RSOS) model with finite hopping distance l0l_{0}, using both analytical and numerical methods. Analytically, we use the hard-core bosonic field theory developed by the authors [Phys. Rev. E {\bf 62}, 7642 (2000)] and derive the Villain-Lai-Das Sarma (VLD) equation for the l0=∞l_{0}=\infty case which corresponds to the conserved RSOS (CRSOS) model and the Kardar-Parisi-Zhang (KPZ) equation for all finite values of l0l_{0}. Consequently, we find that the CRSOS model belongs to the VLD universality class and the RSOS models with any finite hopping distance belong to the KPZ universality class. There is no phase transition at a certain finite hopping distance contrary to the previous result. We confirm the analytic results using the Monte Carlo simulations for several values of the finite hopping distance.Comment: 13 pages, 3 figure

    Modifications of the BTZ black hole by a dilaton/scalar

    Full text link
    We investigate some modifications of the static BTZ black hole solution due to a chosen asymptotically constant dilaton/scalar. New classes of static black hole solutions are obtained. One of the solutions contains the Martinez-Zanelli conformal black hole solution as a special case. Using quasilocal formalism, we calculate their mass for a finite spatial region that contains the black hole. Their temperatures are also computed. Finally, using some of the curvature singularities as examples, we investigate whether a quantum particle behaves singularly or not.Comment: 18 pages, Latex, in press in Phys. Rev.
    • …
    corecore