739 research outputs found
The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering.
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering
Bayesian Estimation of the Timing and Severity of a Population Bottleneck from Ancient DNA
In this first application of the approximate Bayesian computation approach using the serial coalescent, we demonstrated the estimation of historical demographic parameters from ancient DNA. We estimated the timing and severity of a population bottleneck in an endemic subterranean rodent, Ctenomys sociabilis, over the last 10,000 y from two cave sites in northern Patagonia, Argentina. Understanding population bottlenecks is important in both conservation and evolutionary biology. Conservation implications include the maintenance of genetic variation, inbreeding, fixation of mildly deleterious alleles, and loss of adaptive potential. Evolutionary processes are impacted because of the influence of small populations in founder effects and speciation. We found a decrease from a female effective population size of 95,231 to less than 300 females at 2,890 y before present: a 99.7% decline. Our study demonstrates the persistence of a species depauperate in genetic diversity for at least 2,000 y and has implications for modes of speciation in the incredibly diverse rodent genus Ctenomys. Our approach shows promise for determining demographic parameters for other species with ancient and historic samples and demonstrates the power of such an approach using ancient DNA
A Chan Dietary Intervention Enhances Executive Functions and Anterior Cingulate Activity in Autism Spectrum Disorders: A Randomized Controlled Trial
Executive dysfunctions have been found to be related to repetitive/disinhibited behaviors and social deficits in autism spectrum disorders (ASDs). This study aims to investigate the potential effect of a Shaolin-medicine-based dietary modification on improving executive functions and behavioral symptoms of ASD and exploring the possible underlying neurophysiological mechanisms. Twenty-four children with ASD were randomly assigned into the experimental (receiving dietary modification for one month) and the control (no modification) groups. Each child was assessed on his/her executive functions, behavioral problems based on parental ratings, and event-related electroencephalography (EEG) activity during a response-monitoring task before and after the one month. The experimental group demonstrated significantly improved mental flexibility and inhibitory control after the diet modification, which continued to have a large effect size within the low-functioning subgroup. Such improvements coincided with positive evaluations by their parents on social communication abilities and flexible inhibitory control of daily behaviors and significantly enhanced event-related EEG activity at the rostral and subgenual anterior cingulate cortex. In contrast, the control group did not show any significant improvements. These positive outcomes of a one-month dietary modification on children with ASD have implicated its potential clinical applicability for patients with executive function deficits
A Chan Dietary Intervention Enhances Executive Functions and Anterior Cingulate Activity in Autism Spectrum Disorders: A Randomized Controlled Trial
Executive dysfunctions have been found to be related to repetitive/disinhibited behaviors and social deficits in autism spectrum disorders (ASDs). This study aims to investigate the potential effect of a Shaolin-medicine-based dietary modification on improving executive functions and behavioral symptoms of ASD and exploring the possible underlying neurophysiological mechanisms. Twenty-four children with ASD were randomly assigned into the experimental (receiving dietary modification for one month) and the control (no modification) groups. Each child was assessed on his/her executive functions, behavioral problems based on parental ratings, and event-related electroencephalography (EEG) activity during a response-monitoring task before and after the one month. The experimental group demonstrated significantly improved mental flexibility and inhibitory control after the diet modification, which continued to have a large effect size within the low-functioning subgroup. Such improvements coincided with positive evaluations by their parents on social communication abilities and flexible inhibitory control of daily behaviors and significantly enhanced event-related EEG activity at the rostral and subgenual anterior cingulate cortex. In contrast, the control group did not show any significant improvements. These positive outcomes of a one-month dietary modification on children with ASD have implicated its potential clinical applicability for patients with executive function deficits
Detecting Concerted Demographic Response across Community Assemblages Using Hierarchical Approximate Bayesian Computation
Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate
Dejian Mind-Body Intervention Improves the Cognitive Functions of a Child with Autism
There has been increasing empirical evidence for the enhancing effects of Dejian Mind-Body Intervention (DMBI), a traditional Chinese Shaolin healing approach, on human frontal brain activity/functions, including patients with autism who are well documented to have frontal lobe problems. This study aims to compare the effects of DMBI with a conventional behavioural/cognitive intervention (CI) on enhancing the executive functions and memory of a nine-year-old boy with low-functioning autism (KY) and to explore possible underlying neural mechanism using EEG theta cordance. At post-one-month DMBI, KY's inhibitory control, cognitive flexibility, and memory functioning have significantly improved from “severely-to-moderately impaired” to “within-normal” range. This improvement was not observed from previous 12-month CI. Furthermore, KY showed increased cordance gradually extending from the anterior to the posterior brain region, suggesting possible neural mechanism underlying his cognitive improvement. These findings have implicated potential applicability of DMBI as a rehabilitation program for patients with severe frontal lobe and/or memory disorders
A Chinese Chan-Based Mind-Body Intervention Improves Sleep on Patients with Depression: A Randomized Controlled Trial
Sleep disturbance is a common problem associated with depression, and cognitive-behavioral therapy (CBT) is a more common behavioral intervention for sleep problems. The present study compares the effect of a newly developed Chinese Chan-based intervention, namely Dejian mind-body intervention (DMBI), with the CBT on improving sleep problems of patients with depression. Seventy-five participants diagnosed with major depressive disorder were randomly assigned to receive 10 weekly sessions of CBT or DMBI, or placed on a waitlist. Measurements included ratings by psychiatrists who were blinded to the experimental design, and a standardized questionnaire on sleep quantity and quality was obtained before and after the 10-week intervention. Results indicated that both the CBT and DMBI groups demonstrated significantly reduced sleep onset latency and wake time after sleep onset (effect size range = 0.46–1.0, P ≤ 0.05) as compared to nonsignificant changes in the waitlist group (P > 0.1). Furthermore, the DMBI group, but not the CBT or waitlist groups, demonstrated significantly reduced psychiatrist ratings on overall sleep problems (effect size = 1.0, P = 0.00) and improved total sleep time (effect size = 0.8, P = 0.05) after treatment. The present findings suggest that a Chinese Chan-based mind-body intervention has positive effects on improving sleep in individuals with depression
Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris
<p>Abstract</p> <p>Background</p> <p>Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus <it>Symbiodinium</it>. We sampled <it>Leptoseris </it>spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and <it>Symbiodinium </it>communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively.</p> <p>Results</p> <p>Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water <it>Symbiodinium </it>ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5.</p> <p>Conclusion</p> <p>This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the <it>Symbiodinium </it>community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of <it>Leptoseris </it>spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus <it>Leptoseris </it>from Hawaii.</p
A Randomized Controlled Neurophysiological Study of a Chinese Chan
Our previous studies have reported the therapeutic effects of 10-session Chinese Chan-based Dejian mind-body interventions (DMBI) in reducing the intake of antidepressants, improving depressive symptoms, and enhancing the attentional abilities of patients with depression. This study aims to explore the possible neuroelectrophysiological mechanisms underlying the previously reported treatment effects of DMBI in comparison with those of cognitive behavioral therapy (CBT). Seventy-five age-, gender-, and education-matched participants with depression were randomly assigned to receive either CBT or DMBI or placed on a waitlist. Eyes-closed resting EEG data were obtained individually before and after 10 weeks. After intervention, the DMBI group demonstrated significantly enhanced frontal alpha asymmetry (an index of positive mood) and intra- and interhemispheric theta coherence in frontoposterior and posterior brain regions (an index of attention). In contrast, neither the CBT nor the waitlist group showed significant changes in EEG activity patterns. Furthermore, the asymmetry and coherence indices of the DMBI group were correlated with self-reported depression severity levels and performance on an attention test, respectively. The present findings provide support for the effects of a Chinese Chan-based mind-body intervention in fostering human brain states that can facilitate positive mood and an attentive mind
Genomic and microbiological analyses of iron acquisition pathways among respiratory and environmental nontuberculous mycobacteria from Hawai’i
As environmental opportunistic pathogens, nontuberculous mycobacteria (NTM) can cause severe and difficult to treat pulmonary disease. In the United States, Hawai’i has the highest prevalence of infection. Rapid growing mycobacteria (RGM) such as Mycobacterium abscessus and M. porcinum and the slow growing mycobacteria (SGM) including M. intracellulare subspecies chimaera are common environmental NTM species and subspecies in Hawai’i. Although iron acquisition is an essential process of many microorganisms, iron acquisition via siderophores among the NTM is not well-characterized. In this study, we apply genomic and microbiological methodologies to better understand iron acquisition via siderophores for environmental and respiratory isolates of M. abscessus, M. porcinum, and M. intracellulare subspecies chimaera from Hawai’i. Siderophore synthesis and transport genes, including mycobactin (mbt), mmpL/S, and esx-3 were compared among 47 reference isolates, 29 respiratory isolates, and 23 environmental Hawai’i isolates. Among all reference isolates examined, respiratory isolates showed significantly more siderophore pertinent genes compared to environmental isolates. Among the Hawai’i isolates, RGM M. abscessus and M. porcinum had significantly less esx-3 and mbt genes compared to SGM M. chimaera when stratified by growth classification. However, no significant differences were observed between the species when grown on low iron culture agar or siderophore production by the chrome azurol S (CAS) assay in vitro. These results indicate the complex mechanisms involved in iron sequestration and siderophore activity among diverse NTM species
- …