783 research outputs found

    Limb Idleness Index (LII): a novel measurement of pain in a rat model of osteoarthritis

    Get PDF
    SummaryObjectivesMechanical allodynia during ambulation in osteoarthritis (OA) animal models can be assessed as decreased extent of loading or decreased duration of loading. We propose to measure gait adaptation to pain by both mechanisms with the development of Limb Idleness Index (LII) in a rat model of knee OA.MethodsRats were assigned to anterior cruciate ligament transection (ACLT), Sham, or Normal group (n = 6). Gait data were collected at pre-injury, 1, 2, 3 and 6 months post-injury. Ratios of target print intensity, anchor print intensity, and swing duration were combined to obtain LII. The association of gait changes with pain was assessed by buprenorphine treatment at 3 and 6 months post-injury. At 6 months, OA-related structural changes in knee joints were examined by μCT and results from histological scoring were correlated with LII.ResultsAs compared to pre-injury level (range 0.75–1.20), LII in ACLT group was increased at 6 months post-injury, which was significantly higher than that in Sham and Normal groups (P = 0.024). The increase in LII in ACLT group was effectively reversed by buprenorphine treatment (P = 0.004). ACLT group exhibited a significantly higher maximum Osteoarthritis Research Society International (OARSI) score as compared to Sham (P = 0.005) and Normal (P = 0.006) groups. Significant correlation was found between LII and side-to-side difference in OARSI score (r = 0.893, P < 0.001).ConclusionsLII presents a good measurement for OA-related knee pain in rat model

    Extracellular secretion of Carocin S1 in Pectobacterium carotovorum subsp. carotovorum occurs via the type III secretion system integral to the bacterial flagellum

    Get PDF
    Background: Pectobacterium carotovorum subsp. carotovorum is a phytopathogenic enterobacterium responsible for soft rot, a disease characterized by extensive maceration of the affected plant tissue. This species also produces two or more antibacterial substances called bacteriocins, which enhance its competitiveness against related rival species. However, the secretion mechanism for low-molecular-weight bacteriocin is still unknown. Results: A mutant (flhC::Tn5) that did not secrete the low-molecular-weight bacteriocin (LMWB), Carocin S1, was generated by Tn5 insertional mutagenesis. Sequence analysis indicated that this insertion disrupted open reading frame 2 (ORF2) and ORF3 of this strain. Deletion and rescue experiments indicated that ORF2 and ORF3 were both required for extracellular LMWB secretion. The ORF2 and ORF3 sequences showed high homology with the flhD and flhC gene sequences of Pectobacterium carotovorum subsp. atroseptica, Serratia marcescens, Yersinia enterocolitica, and Escherichia coli, indicating that they likely encoded key regulatory components of the type III flagella secretion system. Conclusion: Thus, the extracellular export of Carocin S1 by Pectobacterium carotovorum subsp. carotovorum appears to utilize the type III secretion system integral to bacterial flagella

    Probabilistic Latent Semantic Analyses (PLSA) in Bibliometric Analysis for Technology Forecasting

    Get PDF
    Due to the availability of internet-based abstract services and patent databases, bibliometric analysis has become one of key technology forecasting approaches. Recently, latent semantic analysis (LSA) has been applied to improve the accuracy in document clustering. In this paper, a new LSA method, probabilistic latent semantic analysis (PLSA) which uses probabilistic methods and algebra to search latent space in the corpus is further applied in document clustering. The results show that PLSA is more accurate than LSA and the improved iteration method proposed by authors can simplify the computing process and improve the computing efficiencyDebido a la disponibilidad de servicios abstractos de internet y bases de datos de patentes, un análisis bibliométrico se ha transformado en una aproximación clave de sondeo de tecnologías. Recientemente, el Análisis Semántico Latente (LSA) ha sido aplicado para mejorar la precisión en el clustering de documentos. En el siguiente trabajo se muestra, un nuevo método LSA, el Análisis Semántico Probabilística Latente (PLSA), que utiliza métodos probabilísticas y álgebra para buscar espacio latente en el cuerpo generado por el clustering de documentos. Los resultados demuestran que PLSA es más preciso que LSA y mejora el método de iteración propuesto por autores que simplifican los procesos de computación y mejoran la eficiencia de cómputo.Due to the availability of internet-based abstract services and patent databases, bibliometric analysis has become one of key technology forecasting approaches. Recently, latent semantic analysis (LSA) has been applied to improve the accuracy in document clustering. In this paper, a new LSA method, probabilistic latent semantic analysis (PLSA) which uses probabilistic methods and algebra to search latent space in the corpus is further applied in document clustering. The results show that PLSA is more accurate than LSA and the improved iteration method proposed by authors can simplify the computing process and improve the computing efficienc

    High current density induced damage mechanisms in electronic solder joints: a state-of-the-art review

    Get PDF
    High current density induced damages such as electromigration in the on-chip interconnection /metallization of Al or Cu has been the subject of intense study over the last 40 years. Recently, because of the increasing trend of miniaturization of the electronic packaging that encloses the chip, electromigration as well as other high current density induced damages are becoming a growing concern for off-chip interconnection where low melting point solder joints are commonly used. Before long, a huge number of publications have been explored on the electromigration issue of solder joints. However, a wide spectrum of findings might confuse electronic companies/designers. Thus, a review of the high current induced damages in solder joints is timely right this moment. We have selected 6 major phenomena to review in this paper. They are (i) electromigration (mass transfer due electron bombardment), (ii) thermomigration (mass transfer due to thermal gradient), (iii) enhanced intermetallic compound growth, (iv) enhanced current crowding, (v) enhanced under bump metallisation dissolution and (vi) high Joule heating and (vii) solder melting. the damage mechanisms under high current stressing in the tiny solder joint, mentioned in the review article, are significant roadblocks to further miniaturization of electronics. Without through understanding of these failure mechanisms by experiments coupled with mathematical modeling work, further miniaturization in electronics will be jeopardize

    RLC effects in fine pitch anisotropic conductive film connections

    Get PDF
    The resistance, capacitance and inductance of Anisotropic Conductive Film (ACF) connections determine their high frequency electrical characteristics. The presence of capacitance and inductance in the ACF joint contributes to time delays and crosstalk noise as well as simultaneous switching noise (SSN) within the circuit. The purpose of this paper is to establish an experimental method for estimating the capacitance and inductance of a typical ACF connection. This can help to provide a more detailed understanding of the high frequency performance of ACF assemblies. Design/methodology/approach Experiments on the transient response of an ACF joint were performed using a digital oscilloscope capable of achieving the required ns resolution. An equivalent circuit model is proposed in order to quantify the capacitance (C) and inductance (L) of a typical ACF connection and this model is fitted to the experimental data. The equivalent model consisted of two resistors, an inductor, and a capacitor. Findings The capacitance and inductance of a typical ACF connection were estimated from the measured transient response using Kirchhoff's Voltage Law. The method for estimation of R, L, and C from the transient response is discussed, as are the RLC effects on the high frequency electrical characteristics of the ACF connection. Research limitations/implications There was decay time deviation between the calculation and the experiment. It may be resulted from the skin effect in the high frequency response and the adhesive surrounding joint as well. The main reason may be the capacitance dielectric lost. Further research work will be done to test the dielectric lost in the ACA joint. What is original/value of paper This paper presents a new method to characterise the high frequency properties of ACA interconnections and will be of use to engineers evaluating the performance of ACF materials in high frequency applications

    Microstructures and properties of new Sn-Ag-Cu lead-free solder reinforced with Ni-coated graphene nanosheets

    Get PDF
    © 2015 Elsevier B.V. All rights reserved. This paper deals with microstructures and properties of SAC305 lead-free solder reinforced with graphene nanosheets (GNS) decorated with Ni nanoparticles (Ni-GNS). These Ni-coated GNS nanosheets were synthesized by an in-situ chemical reduction method. After morphological and chemical characterization, Ni-GNS were successfully integrated into SAC305 lead-free solder alloy with different weight fractions (0, 0.05, 0.1 and 0.2 wt.%) through a powder metallurgy route. The obtained composite solders were then studied extensively with regard to their microstructures, wettability, thermal, electrical and mechanical properties. After addition of Ni-GNSs, cauliflower-like (Cu,Ni)6 Sn5 intermetallic compounds (IMCs) were formed at the interface between composite solder joint and copper substrate. Additionally, blocky Ni-Sn-Cu IMC/GNS hybrids were also observed homogenously distributed in the composite solder matrices. Composite solder alloys incorporating Ni-decorated GNSs nanosheets showed slightly reduced electrical resistivity compared to the unreinforced SAC305 solder alloy. With an increase in the amount of Ni-GNS, the composite solders showed an improvement in wettability with an insignificant change in their melting temperature. Mechanical tests demonstrated that addition of 0.2 wt.% Ni-GNS would result in 19.7% and 16.9% improvements in microhardness and shear strength, respectively, in comparison to the unreinforced solders. Finally, the added Ni-GNS reinforcements in the solder matrix were assessed with energy-dispersive X-ray spectroscopy, scanning electron microscopy and Raman spectroscopy

    Microstructural evolution of 96.5Sn–3Ag–0.5Cu lead free solder reinforced with nickel-coated graphene reinforcements under large temperature gradient

    Get PDF
    In this study, 96.5Sn–3Ag–0.5Cu (SAC305) lead-free composite solder containing graphene nanosheets (GNS) decorated with Ni nanoparticles (Ni-GNS) was prepared using a powder metallurgy method. A lab-made set-up and a corresponding Cu/solder/Cu sample design for assessing thermo-migration (TM) was established. The feasibility of this setup for TM stressing using an infrared thermal imaging method was verified; a temperature gradient in a solder joint was observed at 1240 K/cm. Microstructural evolution and diffusion of Cu in both plain and composite solder joints were then studied under TM stressing conditions. Compared to unreinforced SAC305 solder, the process of diffusion of Cu atoms in the composite solder joint was significantly reduced. The interfacial intermetallic compounds (IMCs) present in the composite solder joint also provide a more stable morphology after the TM test for 600 h. Furthermore, during the TM test, the Ni-GNS reinforcement affects the formation, migration and distribution of Ni–Cu–Sn and Cu–Sn IMCs by influencing the dissolution rate of Cu atoms

    Performance of Sn–3.0Ag–0.5Cu composite solder with TiC reinforcement: physical properties, solderability and microstructural evolution under isothermal ageing

    Get PDF
    This paper is focused on the effect of TiC nano-reinforcement that was successfully introduced into a SAC305 lead-free solder alloy with different weight fractions (0, 0.05, 0.1 and 0.2 wt%) through a powder-metallurgy route. Actual retained ratios of TiC reinforcement in composite solder billets and solder joints were quantitatively analysed. The obtained SAC/TiC solders were also studied extensively with regard to their coefficient of thermal expansion (CTE), wettability and thermal properties. In addition, evolution of interfacial intermetallic compounds (IMCs) and corresponding changes in mechanical properties under thermal ageing were investigated. Only about 10%–30% of initial TiC nanoparticles added were found retained in the final composite solder joints. With an appropriate addition amount of TiC nanoparticles, the composite solders exhibited an improvement in their wettability. A negligible change in their melting point and a widened melting range were found in composite solders containing TiC reinforcement. Also, the CTE of composite solder alloys was effectively decreased when compared with the plain SAC solder alloy. In addition, a growth of interfacial IMCs in composite solder joints was notably suppressed under isothermal ageing condition, while their corresponding mechanical properties of composite solder joints significantly outperformed those of non-reinforced solder joints throughout the ageing period

    Retained ratio of reinforcement in SAC305 composite solder joints: effect of reinforcement type, processing and reflow cycle

    Get PDF
    Purpose This paper aims to systematically study the effect of reinforcement type, processing methods and reflow cycle on actual retained ratio of foreign reinforcement added in solder joints. Design/methodology/approach Two kinds of composite solders based on SAC305 (wt.%) alloys with reinforcements of 1 wt.% Ni and 1 wt.% TiC nano-particles were produced using powder metallurgy and mechanical blending method. The morphology of prepared composite solder powder and solder pastes was examined; retained ratios of reinforcement (RRoR) added in solder joints after different reflow cycles were analysed quantitatively using an Inductively Coupled Plasma optical system (ICP-OES Varian-720). The existence forms of reinforcement added in solder alloys during different processing stages were studied using scanning electron microscope, X-ray diffractometry and energy dispersive spectrometry. Findings The obtained experimental results indicated that the RRoR in composite solder joints decreased with the increase in the number of reflow cycles, but a loss ratio diminished gradually. It was also found that the RRoR which could react with the solder alloy were higher than that of the one that are unable to react with the solder. In addition, compared with mechanical blending, the RRoRs in the composite solders prepared using power metallurgy were relatively pronounced. Originality/value Present study offer a preliminary understanding on actual content and existence form of reinforcement added in a reflowed solder joint, which would also provide practical implications for choosing reinforcement and adjusting processing parameters in the manufacture of composite solders

    Effects of bandwidth limitations on the localized state distribution calculated from transient photoconductivity data

    Get PDF
    The possible effects of experimental bandwidth limitation on the accuracy of the energy distribution of the density of localized states (DOS) calculated from transient photoconductivity data by the Fourier transform method is examined. An argument concerning the size of missing contributions to the numerical Fourier integrals is developed. It is shown that the degree of distortion is not necessarily large even for relatively small experimental bandwidths. The density of states calculated from transient photodecay measurements in amorphous arsenic triselenide is validated by comparing with modulated photocurrent data. It is pointed out that DOS distributions calculated from transient photoconductivity data at a high photoexcitation density are valid under certain conditions. This argument is used to probe the conduction band tail in undoped a-Si:H to energies shallower than 0.1 eV below the mobility edge. It is concluded that there is a deviation in the DOS from exponential at about 0.15 eV below the mobility edge
    • …
    corecore