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Abstract  17 

This paper deals with microstructures and properties of SAC305 lead-free solder 18 

reinforced with graphene nanosheets (GNS) decorated with Ni nanoparticles 19 

(Ni-GNS). These Ni-coated GNS nanosheets were synthesized by an in-situ chemical 20 

reduction method. After morphological and chemical characterization, Ni-GNS were 21 

successfully integrated into SAC305 lead-free solder alloy with different weight 22 

fractions (0, 0.05, 0.1 and 0.2wt %) through a powder metallurgy route. The obtained 23 

composite solders were then studied extensively with regard to their microstructures, 24 

wettability, thermal, electrical and mechanical properties. After addition of Ni-GNSs, 25 

cauliflower-like (Cu, Ni)6 Sn5 intermetallic compounds (IMCs) were formed at the 26 

interface between composite solder joint and copper substrate. Additionally, blocky 27 

Ni3Sn4-GNS hybrids were also observed homogenously distributed in the composite 28 
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solder matrices. Composite solder alloys incorporating Ni-decorated GNSs 29 

nanosheets showed slightly reduced electrical resistivity compared to the unreinforced 30 

SAC305 solder alloy. With an increase in the amount of Ni-GNS, the composite 31 

solders showed an improvement in wettability with an insignificant change in their 32 

melting temperature. Mechanical tests demonstrated that addition of 0.2 wt% Ni-GNS 33 

would result in 19.7% and 16.9% improvements in microhardness and shear strength, 34 

respectively, in comparison to the unreinforced solders. Finally, the added Ni-GNS 35 

reinforcements in the solder matrix were assessed with energy-dispersive X-ray 36 

spectroscopy, scanning electron microscopy and Raman spectroscopy. 37 

Key words: Ni-coated graphene oxide; Lead-free solder; Wettability; Melting 38 

temperature; Mechanical properties; Raman spectrum 39 

1. Introduction 40 

Usage of lead in electronics packaging industry has been largely limited because 41 

it poses a threat to the environment as well as people’s health. As a result, lead-free 42 

solders have gained a rapid development opportunity. Since the alloy system of 43 

eutectic SAC (Sn-Ag-Cu) has outstanding mechanical strength, reliability and 44 

solderability, it is widely acknowledged as the material with greatest potential among 45 

those Pb-free solders [1]. Nevertheless, due to the demand for high-performance 46 

electronics and the recent miniaturization trend, the need for new electronic 47 

interconnecting material which has high robustness and stability is increasing a lot [2]. 48 

Hence, in order to fulfil the higher requirements resulted from the current needs of 49 

electronic industry; the properties of those existing materials of Sn-Ag-Cu Pb-free 50 

solders should be further improved. 51 

In order to promote the performance of a traditional solder alloy, it is potentially 52 

feasible to prepare composite solder by introducing foreign reinforcements into the 53 

matrix of the solder alloy. A lot of researchers have widely investigated the influence 54 

of different foreign reinforcements (such as carbon-based materials, ceramics and 55 
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metals) on the microstructural evolution as well as mechanical and physical properties 56 

of solders [3-7]. Due to special chemical and physical features, the carbon-based nano 57 

material (e.g. grapheme and carbon Nanotube) have attracted enormous attention of 58 

people as an outstanding reinforcement [8-14]. As a result, researches of different 59 

fields tend to choose carbon-based nano materials as the reinforcement to form 60 

composites [15-18]. Recently, researchers have made a lot of attempts to study the 61 

influence brought by carbon-based nano materials’ incorporation on the properties of 62 

solder alloy [19-21]. Kumar et al. reported that introduction of Single-wall carbon 63 

nanotube (SWCNT) improved mechanical and melting property of SAC solders [19]. 64 

Hu et al. [20] prepared a Sn-Zn-Bi/GNS composite solder using a mechanical mixing 65 

approach. They reported that the microhardness and shear strength of solder alloys 66 

were considerably improved after GNS addition. In addition, the growth rate of IMC 67 

in Cu/ composite solder interface was decreased under aging condition. Using a 68 

powder-metallurgy processing route, a SAC305/ GNS composite solder was 69 

developed by Liu et al. [21]. This composite solder showed an increase in ultimate 70 

tensile strength (UTS) but a decrease in the coefficient of thermal expansion (CTE). 71 

However, the added reinforcements, especially non-wettable ones (usually 72 

including ceramics and carbon-based materials) are often found to be expelled from a 73 

molten solder during a reflow process [22]. To solve this problem and improve the 74 

retained ratio of the added reinforcement in the solder matrix, researchers attempted 75 

to form a “bridge” between the reinforcement and solder matrix. Some metal 76 

nanoparticles (such as Au and Ni) are regarded as ideal “bridge materials” since they 77 

are apt to react with Sn-based solder alloys to form IMCs during a soldering process. 78 

Silica nanoparticles with an Au layer were synthesized by Mokhtari et al. [23]; they 79 

reported that this core-shell structural reinforcement could be wetted by molten solder. 80 

Yang et al. [24-25] studied the effect of carbon nanotubes with Ni coating (Ni-CNTs) 81 

on mechanical properties and microstructures of solder alloys. Their experimental 82 

results indicated that addition of Ni-CNTs contributed to improvement of 83 

performance of solder alloys. 84 

To date, however, there were no reports on the effect of Ni-modified graphene on 85 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

performance of lead-free solder alloys. In this study, in view of exceptional physical 86 

and chemical characteristics of graphene, multi-layer graphene nanosheets were thus 87 

chosen as the basic reinforcement that also served as a carrier for Ni plating. Ni was 88 

chosen as the “bridge material” since it could form IMCs by reacting with molten 89 

Sn-based solders during soldering process. In addition, it is also widely reported that 90 

an appropriate addition of Ni had a positive effect on microstructure and service 91 

performance of solder alloys [26-27]. 92 

To understand the effect of Ni-GNS composite reinforcement on performance of 93 

the SAC305 solder alloy, an attempt was made to synthesize Ni-GNS reinforcement 94 

as well as fabricating SAC305/Ni-GNS nano-composite solders. Further, both the 95 

microstructures and physical and mechanical properties of these composite solders 96 

were studied in detail. The existence of the doped reinforcement particles in the solder 97 

matrix was also confirmed in this work. 98 

2. Materials and experimental procedures 99 

2.1 Materials 100 

96.5Sn–3Ag–0.5Cu (wt. %) alloy powder with average particle diameter of 101 

35µm, were purchased from Beijing Compo (China). The multi-layer graphene 102 

nanosheets provided by JCNANO Materials Tech (China) with size of 3-10µm and 103 

thickness of 5-10 nm, were used as the carrier for Ni plating. 104 

2.2 Electroless Ni plating  105 

In this study, the synthesis of Ni-GNS process included three steps: (1) ultrasonic 106 

dispersion, (2) sensitization and activation, and (3) electroless Ni plating. All these 107 

three steps are shown in a schematic diagram in Fig 1.  108 

In order to improve the dispersion of GNS nanosheets in chemical reagents, the 109 

as-purchased GNS nanosheets were first ultrasonically dispersed in ethanol solution 110 

(step 1). After that, the nanosheets were further sensitized and activated subsequently 111 
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in SnCl2 (10g/L) and PdCl2 (0.5g/L) solutions (step 2). In the Ni-plating process (step 112 

3), NiSO4 was used as a source of Ni2+ while N2H4�H2O was a reducing agent. After 113 

Ni plating, the Ni-coated GNSs were filtered in a centrifugal filter and dried in a 114 

vacuum furnace at 50°C for 24 h. The components of the plating solution are listed in 115 

Table1 together with experimental conditions. Morphology characterization of 116 

Ni-coated graphene nanosheets was performed with a FE-SEM (Sirion 200) system 117 

together with an Energy Disperse Spectroscopy (EDS).  118 

2.3 Synthesis of nanocomposite solders 119 

In order to prepare composite solders, SAC305 Pb-free solder powders were 120 

mixed homogeneously with Ni-GNS nanosheets which have different weight fractions 121 

(0%, 0.05%, 0.10% and 0.20%) in a planetary ball mill for 20 hours at speed of 122 

180r/min. Specifically, to avoid impurities (especially, other metal elements) 123 

introduced from milling jar or milling balls, the super-hard zirconia milling jar and 124 

balls were employed as the milling media. Then, the ball-milled mixture was 125 

uniaxially compacted into solder billets before sintered in a vacuum atmosphere. 126 

Finally, those solder billets which had been sintered were rolled into the solder foils, 127 

the thickness of which was 200µm. For the convenience of mechanical, wettability 128 

and microstructural analysis, these solder foils were further formed into solder balls 129 

(800µm in diameter) in a reflow oven. Additionally, the as-rolled solder foils and the 130 

as-sintered solder billets were subjected to electrical and thermal testing. 131 

2.4 Characterization methods for composite solder 132 

For microstructural observation, solder balls were firstly mounted in epoxy 133 

before grinding and polishing. The metallographic etching reagent is constituted by 134 

the mixture of ethanol and hydrochloric acid (99.5 vol. % ethanol and 0.5 vol. % 135 

hydrochloric acid). The newly formed IMCs at the interface (or in the solder matrices) 136 

were observed using an environmental scanning electron microscope (ESEM Quanta 137 

200). 138 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

Differential scanning calorimeter (DSC) was employed to determine the melting 139 

points of plain and composite solders. The solder foils whose weight ranges from 5mg 140 

to 10mg are used as specimens for DSC testing. The heating rate during the test was 141 

10 /min, and the highest heating temperature reached up to 250 . A four-point 142 

probe system was employed to measure the electrical resistivity of different solders. 143 

The as-sintered solder billets with dimension of 24 × 8 × 10mm were used as samples 144 

in electrical resistivity test. The dimension of sample was much larger than probe 145 

spacing; in this way, testing precision can be guaranteed. In accordance with previous 146 

researches, the testing current was set within the range of 100mA-1A. In order to 147 

measure the wettability of solders, the contact angle between copper substrate and 148 

solder was tested. For wettability analysis, solder balls were placed on a polished Cu 149 

plate with no-wash flux and heated to a temperature of 250 . After solidification, the 150 

contact angles were measured by a camera in the contact angle tester. For each solder, 151 

five specimens were tested, so that the reliability of the data could be ensured. 152 

The micro-hardness of solder alloys was tested using a Vickers hardness tester 153 

(MXT-CXT) at room temperature. The applied testing load was 100g while the dwell 154 

time was 20s. Thirty samples were tested for each solder system with the maximum 155 

and the minimum values were discarded. The above mentioned solder balls (with a 156 

diameter of 800µm) were also used for shear test. These solder balls, with help of a 157 

reflow oven, were welded onto an experimental chip with copper soldering pads (the 158 

diameter of which was 600µm). The ball shear test was performed on a push-pull 159 

tester (DAGE 4000-plus, Nordson Co. Ltd., U.S.). The shear height was 50µm while 160 

the shear speed was 25µm/s. After shear test, the fractography of samples were also 161 

studied using the ESEM (Quanta200) system. Additionally, by using Raman 162 

spectrometer (RAMAN), EDS and FE-SEM, the shear-fractured surface of solder 163 

balls were also studied, so as to verify the existence of the Ni-GNS in the solder 164 

matrices. 165 

 166 

 167 

 168 
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3. Results and discussion    169 

3.1 Characterization of Ni-GNSs 170 

As shown in Fig 2a, folds and wrinkles were observed on the surface of initial 171 

multi-layer GNSs, which are characteristic features of thin 2-D graphene [28]. After 172 

Ni plating, the surface of graphene nanosheets (see Fig 2b) exhibited a grainy 173 

morphology. From the magnified images (Figs. 2c and d), it can be seen that Ni 174 

nanoparticles with an average diametre of 100 nm were successfully deposited on the 175 

surface of GNSs. Results of EDS indicated weight fractions of C and Ni in the chosen 176 

location (marked in Fig, 2d) - 6.03% and 78.88%, respectively. This result helped to 177 

confirm the existence of Ni nanoparticles on the GNS surface; the elements N and O 178 

appeared in the EDS spectrum might be caused by residual reagents and oxidation.   179 

3.2 Microstructural characterization  180 

From microstructures of both plain and composite solders under as-soldered 181 

condition (Fig. 3), it can be easily found that there are considerable differences in the 182 

morphology of IMCs formed at the solder/Cu interface in different solders. For the 183 

plain SAC solder sample, the short-rod like Cu6Sn5 IMCs can be observed at the 184 

interface, produced by the Sn-Cu reaction during the soldering process. However, 185 

morphologies of IMCs at composite solders/Cu interfaces were altered after the 186 

doping of Ni-GNS. As can be seen in Figs. 3b-d, morphology of these IMCs 187 

manifested a transformation, from the short-rod like to a cauliflower-like. The EDS 188 

spectrum of a chosen interfacial location (shown in Fig. 3d) indicated that these newly 189 

formed IMCs consisted of Sn, Ni and Cu. In addition, it was also found that thickness 190 

of IMCs formed at the interfaces was also changed. In order to measure it, an image 191 

software (Image J) was employed, and the obtained results are presented in Table 2. It 192 

can be seen that the thickness magnitude of IMCs was proportional to the amount of 193 

Ni-GNS added. For instance, thickness of IMCs in the composite solder reinforced 194 

0.2Ni-GNS achieved 5.93±0.63µm, in contrast to 4.25±0.72µm in the plain SAC 195 

solder. It has reported that the apparent activation energy of (Cu,Ni)6Sn5 was 34.6 196 

kJ/mol, which is much lower than that of Cu6Sn5 (58.6 kJ/mol) [29]. Moreover, it was 197 
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reported that the diffusion coefficients of Cu atoms and Ni atoms in liquid Sn were 198 

1.8×10−4 cm2/s and 2.3×10−4 cm2/s, respectively [30]. These findings indicate that 199 

(Cu,Ni)6Sn5 can easier be formed compared to Cu6Sn5. Essentially speaking, the 200 

formation of interfacial IMC mainly controlled by diffusion mechanism. In the 201 

present study, it is believed that a part of Ni nanoparticles depositing on GNSs 202 

nanosheets arrived at the solder/Cu interface, leading to the formation of (Cu,Ni)6Sn5 203 

IMC. Therefore, the variations of IMCs in morphology and thickness might be 204 

attributed to the diffusion of Ni that introduced from the added Ni-GNS. 205 

In addition to the microstructural variation at the solder/Cu interface, 206 

microstructures in the composite solder matrix also exhibited some differences. By 207 

comparing the microstructural images shown in Fig. 3, two main features can be 208 

easily observed in the composite solder matrix—coarse Ag3Sn IMCs and the newly 209 

formed blocky IMCs. A change in the grain size of Ag3Sn IMCs was also measured 210 

with the software and the results are presented in Table 2. Apparently, the grain size 211 

of Ag3Sn exhibited an increasing trend, from 1.22±0.34µm in the plain SAC solder to 212 

2.35±0.46µm in the 0.2Ni-GNS composite solder. The variation in the grain size of 213 

Ag3Sn IMCs might be a result of the change in undercooling during solidification, 214 

caused by the doping of Ni-GNSs. 215 

Newly formed blocky IMCs in the composite solder matrix were also studied. 216 

These IMCs shaped as spheres or short rods (Fig. 3b-d) were formed in the matrix 217 

after addition of Ni-GNSs. In particular, with an increase in the amount of Ni-GNSs 218 

added (from 0 to 0.2 wt. %), these IMCs demonstrated an increase both in their 219 

quantity and volume. In order to further understand the distribution and components 220 

of these IMCs in the solder matrix, a representative SEM image of the 221 

SAC/0.2Ni-GNS solder alloy with corresponding EDS analysis is presented in Fig. 4. 222 

From the SEM image it can be found that these IMC phases (mentioned above) with a 223 

dark colour (their average size was 5.32±1.83µm), were relatively uniformly 224 

distributed in the solder matrix. The EDS spectrum revealed that the weight fraction 225 

of Ni, Cu and Sn in the chosen position were 2.69%, 22.75% and 50.9% respectively, 226 

this result helped to prove that the IMCs were of the (Cu, Ni)6Sn5 phase. A similar 227 

IMC phase was reported by Yang et al. [25] when studying the properties of 228 

SAC/CNT-Ni composite solder.   229 

Moreover, it is also worth noting that appearance of C atoms in the EDS 230 

spectrum (Fig. 4b), which can be seen as an evidence of GNS reinforcements. Hence, 231 
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there is a reason to believe that the deposited Ni nanoparticles were not completely 232 

broken away from GNS surfaces during the soldering process. As depicted in Fig. 5, 233 

Ni nanoparticles tend to act as a “bridge” linking GNSs and the solder matrix by 234 

forming Ni-containing IMCs. This process would eventually improve the retained 235 

ratio of GNSs in the solder joint. The influence of deposited Ni nanoparticles on 236 

IMCs composition and the retained ratio of nanosheets in the solder alloy will be 237 

further studied in our future research. 238 

 3.3 DSC test results 239 

Fig. 6 illustrates the DSC results of both the plain solder and the composite 240 

solders incorporated with Ni-GNS reinforcements. It is evident that all endothermic 241 

peaks were appeared within the range of 219.25 to 220.12 . This result indicates 242 

that the melting point of the solder alloy can hardly be influenced when the weight 243 

fraction of Ni-GNS is relatively small. In addition, it can also be known from 244 

Lindermann criterion that a material’s melting point is one of its inherent features, 245 

which is determined by inter-atomic distance and the atomic mean-square 246 

displacements [31]. In this study, however, the balance the inter-atomic distance and 247 

the atomic mean-square displacements of solder alloy could hardly be changed by 248 

adding a small quantity of Ni-GNS reinforcements. Therefore, the appropriate 249 

addition of Ni-GNS will not limit the applicability of the SAC305/ Ni-GNS soler 250 

alloy by affecting its melting point significantly. 251 

3.4 Resistivity of plain SAC and reinforced solders 252 

The results of the electrical-resistivity measurements for SAC solders with 253 

various concentrations of Ni-GNS reinforcement are presented in Fig. 7. The test data 254 

of show a slight decrease in electrical resistivity with an increasing amount of 255 

Ni-GNSs. According to previous studies, volume fraction, shape, size, and type of 256 

reinforcements are main factors that largely determine the electrical resistivity of a 257 

composite material [32-35]. According to the rule proposed by Matthiessen [36], the 258 

total electrical resistivity of a material consist of three parts, including deformation 259 
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resistivity, thermal resistivity and impurity resistivity. Through influencing the lattice 260 

scattering and impurity scattering, these three types of resistivities would disturb the 261 

normal motions of electrons so as to affect the electrical resistivity of a material. 262 

However, compared with monolithic solder alloys, the electrical resistivity of a 263 

composite solder alloy is mainly determined by impurity resistivity. Specifically, the 264 

reinforcements in composite conductive systems often work as the centers for electron 265 

scattering. Accordingly, the electrical resistivity of the composite system would be 266 

significantly influenced when the volume fraction of reinforcements is relatively high. 267 

 In this study, there was little difference between electrical resistivities of the 268 

plain solder and the Ni-GNS-reinforced composite solders. This phenomenon can be 269 

interpreted based on the effect of reinforcement’s electrical resistivity and the amount 270 

of Ni-GNSs added. On the one hand, the electrical resistivities of Ni (~ 6.84 µΩ·cm) 271 

and GNSs (~10 µΩ·cm) are both much smaller than that of the SAC solder (12.9 272 

µΩ·cm). Thus, addition of Ni-GNSs helped to lower electrical resistivity of the 273 

composite solder. On the other hand, as mentioned above, the volume fraction of 274 

reinforcement also has a considerable effect on resistivity of composites. However, in 275 

this study, relatively small amounts of Ni-GNSs used as reinforcement could hardly 276 

affect significantly the resistivity of the studied solder systems. 277 

3.5 Wettability measurement 278 

The wettablity of a solder alloy is a critical property that used to evaluate the 279 

bonding quality between solder and substrate. Generally, in the process of soldering, 280 

solder alloy which has smaller contact angle on the substrate also provide much more 281 

dependable interconnection [37]. As shown in Fig. 8, the measured contact angle 282 

decreased with addition of Ni-GNS (from 37.5° for the plain SAC solder to 32.6° for 283 

the SAC with 0.2 wt. % Ni-GNSs). These test results indicate that introduction of 284 

Ni-GNS reinforcement improved wettability of the composite solders. This may be 285 

attributed to the fact that added Ni-GNS nanoparticles accumulated at the interface 286 

between the molten solder and the flux during soldering; thereby lowering the 287 
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interfacial surface energy. This process decreases the interfacial tension between the 288 

flux and the solder, resulting in formation of a smaller contact angle. 289 

3.6 Mechanical properties: Microhardness and Shear strength 290 

Since micro-hardness is closely related to the abrasion or wearing resistence of 291 

solder alloys, micro-hardness is usually regarded as one main item to evaluate the 292 

mechanical performance of solder alloys. Generally, factors which determine the 293 

microhardness of solder alloys mainly include microstructures, dislocation motion, 294 

chemical composition and processing temperature [38]. Fig.9 shows the average 295 

microhardness for the 0.05, 0.1 and 0.2 wt% SAC/ Ni-GNS composite solder alloys 296 

and the plain SAC samples. It is evident that the composite solder alloy display an 297 

increase in the microhardness values with increasing weight fraction of Ni-GNS. 298 

Compared with the plain SAC solder (12.2HV), the average microhardness of 299 

composite solder alloy increased up to 19.7% (reached 14.6HV) with 0.2 wt. % 300 

Ni-GNS addition. Herein, the classical dispersion strengthening theory can be 301 

employed to give explanation for the improvement in micro-hardness [39]. Based on 302 

the theory, the added foreign particles are likely to affect the deformation behaviours 303 

of solder alloys by impeding dislocation motions and grain-boundary sliding, which in 304 

turn increase the microhardness [40]. Such a phenomenon is widely known as pinning 305 

effect, which could explain the strengthing mechanism of composite materials. In the 306 

present study, the reinforcing Ni-GNSs in a core-shell form (the core is GNS while 307 

the outer shell is newly formed (Ni, Cu)6Sn5 IMCs), were found uniformly dispersed 308 

in the solder matrix (see Fig. 4a). This uniformly distributed composite reinforcement 309 

can serve as enhancing phases, inhibiting effectively mechanical deformation. 310 

In addition to the micro-hardness test, ball shear test is another common 311 

approach to evaluate the reliability of a solder joint. In this study, ball shear test was 312 

also carried out to measure the shear strength of both plain and composite solder 313 

joints. Fig.10 shows the average shear strength and the standard deviations of the 314 

Ni-GNS doping composite solder alloys and the plain SAC samples. It can be 315 
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observed that the average shear strength of SAC/Ni-GNS composite solder joints was 316 

obviously higher than that of the plain SAC solder joints. In particular, the average 317 

shear strength of the 0.2 wt% Ni-GNS incorporating composite solder joint reached 318 

58.4MPa, compared with 48.8MPa of plain SAC solder joints. The enhancement in 319 

shear strength can also be attributed to the newly formed (Ni, Cu)6Sn5 IMC and the 320 

uniformly distributed Ni-GNS in the composite solder matrix. In addition, it is 321 

expected that the excellent intrinsic mechanical strength of GNS nanosheets also 322 

made a considerable contribution to the improvement in shear strength. 323 

3.7 Fracture analysis 324 

After the ball shear test, the shear-fractured surfaces were further observed using 325 

an ESEM system to understand the failure behaviors of solder joints. Fig.11a-d show 326 

the morphologies of the fractured surfaces of both plain and composite solder joints. It 327 

can be observed that the plain SAC solder joint (Fig.11a) presents a brittle fracture 328 

pattern with a relatively smooth surface. In contrast, a ductile fracture pattern with 329 

more dimples and more rough morphology was obtained on the fractured surface of 330 

composite solder joints. Specifically, the roughness of fractured surface increases with 331 

the addition amount of Ni-GNS nanosheets increases. This transformation in fracture 332 

mode may directly benefit from the homogeneously distributed Ni-GNS nanosheets in 333 

the solder matrix. 334 

3.8 Verification of Ni-GNSs reinforcement in composite solder 335 

Verification of existence, actual position and characterisation of structural 336 

attributes of reinforcements in the solder matrix are the main focus of research into 337 

composite solders. As the most effective tool to characterize the carbon-based 338 

materials, Raman spectroscopy was employed to identify and validate the doped 339 

Ni-GNSs in the composite solder. It was reported previously [41-42] that shear 340 

fractures often occur at the interface between intermetallic phase and Sn-rich phase in 341 

Sn-based solder matrix. In addition, according to a previous study concerning the 342 
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location of the reinforcement added in the solder matrix, reinforcements are more 343 

likely aggregated at IMC surface or phase interfaces [43]. Hence, the added Ni-GNSs 344 

could possibly be found at shear-fracture areas. In this study, the shear-fractured 345 

surfaces of solder joints were observed so as to verify the existence of the added 346 

Ni-GNSs. A typical SEM image taken from a fracture surface (Fig. 12a) demonstrates 347 

that there are some sheet-like substances embedded in the solder matrix. 348 

According to the EDS spectrum (Fig. 12b), carbon and nickel atoms were present 349 

in the chosen position, with weight ratios of 8.74% and 1.18%, respectively. To 350 

identify these sheet-like substances, Raman spectroscopy was employed to further 351 

analyse the area of aggregation of these sheets; the obtained Raman spectrum is 352 

shown in Fig. 13. In this spectrum three peaks are notable: 1363 cm-1, 1586 cm-1 and 353 

2720 cm-1, characteristic to GNS [44]. Thus, the Raman spectrum together with the 354 

results of the SEM and EDS analyses confirmed the presence of the Ni-GNSs 355 

reinforcements in the matrices of the composite solders. In addition, the element 356 

contents of C and Ni shown in Fig. 12b are highly consistent with the EDS result 357 

provided in Fig. 4b. This finding could strongly corroborates the view that the 358 

deposited Ni nanoparticles were transformed into (Ni, Cu)6Sn5 and finally stay at the 359 

surface, or in the vicinity, of GNS sheets.  360 

4. Conclusions 361 

GNS nanosheets decorated with Ni nanoparticles (Ni-GNS) were prepared with 362 

the chemical reduction method, which were subsequently added as reinforcement to 363 

SAC305 through a powder metallurgy route to form composite solders. On the basis 364 

of characterization of Ni-GNSs and analyses of the microstructures as well as physical 365 

and mechanical properties of the synthesized composite solders, the primary results of 366 

this study can be summarized as follows: 367 

1) Ni nanoparticles with diameter of approximately 100 nm were successfully 368 

deposited on the surface of graphene nanosheets, so as to obtain the 369 

composite reinforcement— Ni-GNSs.  370 
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2) With addition of Ni-GNSs in the solder matrix, morphology of IMCs at the 371 

solder/Cu interface was changed from short-rod like to cauliflower-like; 372 

thickness of this interfacial IMCs was proportional to the amount of Ni-GNSs 373 

added, which could be explained by diffusion of Ni. In addition, uniformly 374 

dispersed blocky (Ni, Cu)6Sn5 as well as the coarse Ag3Sn IMCs were 375 

observed in the solder matrix after addition of Ni-GNSs. 376 

3) Only insignificant decline in electrical resistivity of Ni-GNS doped composite 377 

solders was found related to lower resistivity of Ni and GNS. There was also 378 

a negligible change in the melting point in Ni-GNS-reinforced solders, since 379 

nanosheets were added in relatively small amounts. However, the change in 380 

contact angle indicated that addition of nanoparticles enhanced wettability of 381 

the solder.  382 

4) The improvements in both the microhardness and the shear strength due to the 383 

addition of the Ni-decorated graphene nanosheets were observed which can 384 

be directly attributed to the uniform dispersion of the (Ni, Cu)6Sn5 in the 385 

solder matrix.  386 

5) The added Ni-decorated graphene nanosheets were found on the fracture 387 

surfaces after mechanical testing. The results obtained with EDS and Raman 388 

spectroscopy confirmed the existence of Ni-GNSs in the solder matrix.   389 
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Table 1 The components of plating solution and experimental condition 

Bath composition  Plating condition  

NiSO4�7H2O 25 g/L pH 10 

N2H4�H2O 30 g/L Temperature (T) 90°C 

Sodium tartrate 10 g/L Ultrasonic power 90 W 

Sodium citrate 30 g/L Time 30 min 

(NH4)2SO4 50 g/L GNS powder 0.5 g/L 

NH3�H2O 5%   
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Table 2 Average thickness of IMCs at interfaces and average grain size of Ag3Sn  

 

Sample Addition (wt. %) Average thickness of IMC (µm) Average size of Ag3Sn (µm) 

SAC Nil 4.25±0.72 1.22±0.34 

1 0.05 4.59±0.65 1.39±0.47 

2 0.1 5.24±0.48 1.68±0.53 

3 0.2 5.93±0.63 2.35±0.46 
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Fig. 1 Schematic of preparation of Ni-decorated nanosheets  
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Fig. 2 (a) Intinal GNSs, (b) as-prepared Ni-GNSs, (c) magnified micrographs of Area 

A; (d) magnified micrographs of Area B; (e) EDS pattern of chosen location   
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Fig. 3 Microstructures near interfaces of Cu substrate with SAC (a), 
SAC/0.05Ni-GNS (b), SAC/0.1Ni-GNS (c) and SAC/0.2Ni-GNS (d) solders 
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Fig. 4 (a) Representative image of distribution of (Cu, Ni)6Sn5 in SAC/0.2Ni-GNS 

solder matrix; (b) corresponding EDS spectrum in chosen location 
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Fig. 5 Supposed forms of Ni-GNS in solder matrix before (a) and after (b) 

soldering 
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Fig. 6 DSC curves for different solders: (a) SAC; b SAC/0.05Ni-GNS; c

SAC/0.1Ni-GNS; d SAC/0.2Ni-GNS  
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Fig. 7 Effect of volume fraction of Ni-GNSs on electrical resistivity of SAC solders 
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Fig.8 Effect of volume fraction of Ni-GNSs on contact angles of SAC alloys   
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Fig. 9 Effect of volume fraction of Ni-GNSs on microhardness of nanocomposite 

solders  
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Fig. 10 Effect of volume fraction of Ni-GNSs on shear strength of 

nanocomposite solders  
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Fig.11 SEM of fracture surfaces of SAC solder joints with different fractions of 

Ni-GNS reinforcement (in wt.%): (a) 0; (b) 0.05; (c) 0.1; (d) 0.2 
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Fig.12 (a) Typical SEM image of Ni-GNS agglomeration located at bottom of dimple 

after shear test, (b) corresponding EDS spectra for selected area marked in (a) 
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Fig. 13 Raman spectrum of chosen area in Fig. 12 (a) 
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Highlights 
 

1. Ni-coated graphene (Ni-GNS) composite reinforcement was prepared by electroless plating 

method. 

2. Ni-GNS/SAC305 composite solders were further prepared through powder metallurgic 

route. 

3. Microstructures, solderability and mechanical properties of this newly made composite 

solder were extensively studied. 

4. The existence and distribution of the added reinforcement were confirmed.       




