51,834 research outputs found

    Coexistence for a multitype contact process with seasons

    Full text link
    We introduce a multitype contact process with temporal heterogeneity involving two species competing for space on the dd-dimensional integer lattice. Time is divided into seasons called alternately season 1 and season 2. We prove that there is an open set of the parameters for which both species can coexist when their dispersal range is large enough. Numerical simulations also suggest that three species can coexist in the presence of two seasons. This contrasts with the long-term behavior of the time-homogeneous multitype contact process for which the species with the higher birth rate outcompetes the other species when the death rates are equal.Comment: Published in at http://dx.doi.org/10.1214/09-AAP599 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Phase transition in the Higgs model of scalar dyons

    Full text link
    In the present paper we investigate the phase transition "Coulomb--confinement" in the Higgs model of abelian scalar dyons -- particles having both, electric ee and magnetic gg, charges. It is shown that by dual symmetry this theory is equivalent to scalar fields with the effective squared electric charge e^{*2}=e^2+g^2. But the Dirac relation distinguishes the electric and magnetic charges of dyons. The following phase transition couplings are obtained in the one--loop approximation: \alpha_{crit}=e^2_{crit}/4\pi\approx 0.19, \tilde\alpha_{crit}=g^2_{crit}/4\pi\approx 1.29 and \alpha^*_{crit}\approx 1.48.Comment: 16 pages, 2 figure

    Physics of planetary atmospheres. i- ray- leigh scattering by helium

    Get PDF
    Physics of planetary atmospheres - Variation method used to calculate Rayleigh scattering cross sections of helium as wavelength functio

    Modeling of secondary organic aerosol yields from laboratory chamber data

    Get PDF
    Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA) formation. Current models fall into three categories: empirical two-product (Odum), product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs) classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice

    Archetypal Analysis: Mining Weather and Climate Extremes

    Get PDF
    Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distribution of the system in state space and overlook its tail. This paper explores a different method, the archetypal analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data in state space by finding “corners” that represent “pure” types or archetypes through computing mixture weight matrices. The method is quite new in climate science, although it has been around for about two decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method is presented along with a new manifold-based optimization algorithm that optimizes for the weights simultaneously, unlike the conventional multistep algorithm based on the alternating constrained least squares. The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST) from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño, La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with possible future development are also discussed
    corecore