33 research outputs found

    Draft Genome Sequence of the Sulfate-Reducing Bacterium <i>Desulfotomaculum copahuensis</i> Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina

    Get PDF
    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Microsporidian Eye Infection from Outdoor Recreational Activities

    No full text

    Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    Get PDF
    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community

    Genome sequence of anoxybacillus thermarum af/04t, isolated from the Euganean hot springs in Abano Terme, Italy

    No full text
    Anoxybacillus thermarum AF/04T was isolated from the Euganean hot springs in Abano Terme, Italy. The present work reports a high-quality draft genome sequence of strain AF/04T. This work also provides useful insights into glycoside hydrolases, glycoside transferases, and sugar transporters that may be involved in cellular carbohydrate metabolism

    Draft genome sequence of erythrobacter vulgaris strain o1, a glycosyl hydrolase-producing bacterium

    No full text
    Erythrobacter vulgaris strain O1, a moderate halophile, was isolated from a beach in Johor, Malaysia. Here, we present the draft genome and suggest potential applications of this bacterium

    Meta-analysis of microbial communities in hot springs: recurrent taxa and complex shaping factors beyond ph and temperature

    Get PDF
    The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities’ profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed

    Draft genome sequence of jeotgalibacillus soli dsm 23228, a bacterium isolated from alkaline sandy soil

    No full text
    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a nonmarine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented

    Identification of key bacterial players during successful full-scale soil field bioremediation in Antarctica

    No full text
    The Antarctic continent is not exempted from anthropogenic contamination. Diesel spills on Antarctic soils occur frequently. There, extreme climate conditions and the scarce infrastructure, cause that few remediation strategies become feasible. Bioremediation has proven to be an effective approach for hydrocarbon-contaminated soils in Antarctica, allowing the removal of up to 80% of the contaminant by biostimulating soil microbial communities in biopiles. However, little is known on the changes that this treatment cause in the microbial communities, and how may this knowledge be used for future bioremediation schemes. In this work, we analyzed the changes in the bacterial community composition of biostimulated (BS) and control (CC) biopiles at Carlini Station (Arg.), Antarctica, from our previously reported “on-site” bioremediation scheme. The results showed that hydrocarbon biodegradation in Antarctic soils was accompanied by a significant change in bacterial community composition, with a progressive differentiation between the treated (BS) and non-treated (CC) systems as a function of time. Microbial diversity decreased in the BS system due to the enrichment in genera Pseudomonas, Rhodococcus, and Rhodanobacter, that seemed to follow an r/K (or copiotrophic/oligotrophic) strategist dynamic, in which Pseudomonas increased significantly at the early stages of the treatment (from initial 23.8% up to 33.2% at day 20, r strategist), while Rhodococcus and Rhodanobacter (K strategists) became dominant since day 20 and until the end of the experiment (from 5.4% to 2.4% at T = 0 days, up to 17.4% and 14.0% at the end of the experiment, respectively). In the control system, Sphingomonas (14.0% at T = 30 days), Pseudomonas (10.5% at T = 30 days), and Rhizorhapis (9.9% at T = 30 days) were the genera with higher relative abundance during the entire treatment period, with no short-term shifts in dominances and a more diverse and even bacterial community.Fil: Martinez Alvarez, Lucas Manuel. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Bolhuis, Henk. University of Utrecht; Países Bajos. Utrecht University; Países BajosFil: Mau, Goh Kian. Universiti Teknologi Malaysia; MalasiaFil: Kok Gan, Chan. Jiangsu University; ChinaFil: Sing, Chan Chia. Universiti Teknologi Malaysia; MalasiaFil: Mac Cormack, Walter Patricio. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Ruberto, Lucas Adolfo Mauro. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentin

    Trends in respiratory virus infections during the COVID-19 pandemic in Singapore, 2020

    No full text
    The COVID-19 pandemic brought unprecedented challenges to the world. Many jurisdictions implemented control measures, such as border closures, lockdowns, school and business closures, travel restrictions, mask wearing, and social distancing. This was associated with changes in the prevalence of other respiratory viruses, predominantly influenza viruses1,2 but others as well.3 Singapore represents a unique setting that is credited with having a successful COVID-19 response. It went through different response phases, from prelockdown (pandemic level 3) to a full lockdown (known as circuit breaker), followed by a phased reopening, during which schools and businesses reopened but social distancing measures and universal mask wearing remained in place (eTable in the Supplement). Our aim in this study was to assess the associated changes in respiratory virus prevalence in 2020 compared with the prepandemic year 2019.Published versio
    corecore