12 research outputs found

    The control of malaria vectors in rice fields: a systematic review and meta-analysis.

    Get PDF
    The relatively stable aquatic conditions of irrigated lowland and rainfed rice, which is grown across 145 million hectares in more than 100 countries, are capable of generating large numbers of mosquito vectors of malaria, which causes more than 400,000 deaths per year worldwide. Many methods can control these vectors, but a systematic review has not previously been conducted. This study assesses whether larviciding, fish or intermittent irrigation can significantly reduce malaria vectors in rice fields whilst increasing rice yield. After a literature search for studies reporting the effect of larval control and rice cultivation practices on malaria vector densities in rice fields, 33 studies were eligible for meta-analysis. Larviciding was effective at reducing rice-field malaria vectors. Pooled analysis of five controlled time-series (CTS) studies with chemical insecticides showed an overall combined reduction of larval densities of 77% compared to no larviciding. Eight CTSs with biological larvicides showed a pooled reduction of 60% compared to no larviciding. Cultivating rice and fish together provided good control too: a pooled analysis of three CTSs showed an overall 82% reduction in anopheline larvae compared to no fish. Pooled analysis of four studies suggested that intermittent irrigation (using various timings and frequencies of drainage) is effective at reducing the abundance of late-stage anopheline larvae (pooled reduction = - 35%), but not overall immature abundance, compared to continuous flooding. We conclude that many interventions such as larvicides, fish and intermittent irrigation can provide riceland malaria vector control, but the critical obstacle to wider use is farmer acceptability. Future research should be led by the agricultural sector, with inputs from entomologists, to investigate malaria control co-benefits within high-yielding rice cultivation practices

    Malaria transmission and prevalence in rice-growing versus non-rice-growing villages in Africa: a systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Rice fields in Africa are major breeding sites for malaria vectors. However, when reviewed in the 1990s, in settings where transmission was relatively intense, there was no tendency for malaria indices to be higher in villages with irrigated rice fields than in those without. Subsequently, intervention coverage in sub-Saharan Africa has been massively scaled up and malaria infection prevalence has halved. We re-examined this rice-malaria relationship to assess whether, with lower malaria transmission, malaria risk is greater in rice-growing than in non-rice-growing areas. METHODS: For this systematic review and meta-analysis, we searched EMBASE, Global Health, PubMed, Scopus, and Web of Science to identify observational studies published between Jan 1, 1900, and Sept 18, 2020. Studies were considered eligible if they were observational studies (cross-sectional, case-control, or cohort) comparing epidemiological or entomological outcomes of interest between people living in rice-growing and non-rice-growing rural communities in sub-Saharan Africa. Studies with pregnant women, displaced people, and military personnel as participants were excluded because they were considered not representative of a typical community. Data were extracted with use of a standardised data extraction form. The primary outcomes were parasite prevalence (P falciparum parasite rate age-standardised to 2-10-year-olds, calculated from total numbers of participants and number of infections [confirmed by microscopy or rapid diagnostic test] in each group) and clinical malaria incidence (number of diagnoses [fever with Plasmodium parasitaemia confirmed by microscopy or rapid diagnostic test] per 1000 person-days in each group). We did random-effects meta-analyses to estimate the pooled risk ratio (RR) for malaria parasite prevalence and incidence rate ratio (IRR) for clinical malaria in rice-growing versus non-rice-growing villages. RRs were compared in studies conducted before and after 2003 (chosen to mark the start of the mass scale-up of antimalaria interventions). This study is registered with PROSPERO (CRD42020204936). FINDINGS: Of the 2913 unique studies identified and screened, 53 studies (including 113 160 participants across 14 African countries) were eligible for inclusion. In studies done before 2003, malaria parasite prevalence was not significantly different in rice-growing versus non-rice-growing villages (pooled RR 0·82 [95% CI 0·63-1·06]; 16 studies, 99 574 participants); however, in post-2003 studies, prevalence was significantly higher in rice-growing versus non-rice growing villages (1·73 [1·01-2·96]; seven studies, 14 002 participants). Clinical malaria incidence was not associated with residence in rice-growing versus non-rice-growing areas (IRR 0·75 [95% CI 0·47-1·18], four studies, 77 890). Potential limitations of this study include its basis on observational studies (with evidence quality rated as very low according to the GRADE approach), as well as its omission for the effects of seasonality and type of rice being cultivated. Risk of bias and inconsistencies was relatively serious, with I2 greater than 90% indicating considerable heterogeneity. INTERPRETATION: Irrigated rice-growing communities in sub-Saharan Africa are exposed to greater malaria risk, as well as more mosquitoes. As increasing rice production and eliminating malaria are two major development goals in Africa, there is an urgent need to improve methods for growing rice without producing mosquitoes. FUNDING: Wellcome Trust Our Planet Our Health programme, CGIAR Agriculture for Nutrition and Health

    Vector control for malaria prevention during humanitarian emergencies: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Humanitarian emergencies can lead to population displacement, food insecurity, severe health system disruptions, and malaria epidemics among individuals who are immunologically naive. We aimed to assess the impact of different vector control interventions on malaria disease burden during humanitarian emergencies. METHODS: In this systematic review and meta-analysis, we searched ten electronic databases and two clinical trial registries from database inception to Oct 19, 2020, with no restrictions on language or study design. We also searched grey literature from 59 stakeholders. Studies were eligible if the population was affected by a humanitarian emergency in a malaria endemic region. We included studies assessing any vector control intervention and in which the primary outcome of interest was malaria infection risk. Reviewers (LAM, JF-A, KC, BP, and LP) independently extracted information from eligible studies, without masking of author or publication, into a database. We did random-effects meta-analyses to calculate pooled risk ratios (RRs) for randomised controlled trials, odds ratios (ORs) for dichotomous outcomes, and incidence rate ratios (IRR) for clinical malaria in non-randomised studies. Certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. This study is registered with PROSPERO, CRD42020214961. FINDINGS: Of 12 475 studies screened, 22 studies were eligible for inclusion in our meta-analysis. All studies were conducted between Sept 1, 1989, and Dec 31, 2018, in chronic emergencies, with 616 611 participants from nine countries, evaluating seven different vector control interventions. Insecticide-treated nets significantly decreased Plasmodium falciparum incidence (RR 0·55 [95% CI 0·37-0·79]; high certainty) and Plasmodium vivax incidence (RR 0·69 [0·51-0·94]; high certainty). Evidence for an effect of indoor residual spraying on P falciparum (IRR 0·57 [95% CI 0·53-0·61]) and P vivax (IRR 0·51 [0·49-0·52]) incidence was of very low certainty. Topical repellents were associated with reductions in malaria infection (RR 0·58 [0·35-0·97]; moderate certainty). Moderate-to-high certainty evidence for an effect of insecticide-treated chaddars (equivalent to shawls or blankets) and insecticide-treated cattle on malaria outcomes was evident in some emergency settings. There was very low certainty evidence for the effect of insecticide-treated clothing. INTERPRETATION: Study findings strengthen and support WHO policy recommendations to deploy insecticide-treated nets during chronic humanitarian emergencies. There is an urgent need to evaluate and adopt novel interventions for malaria control in the acute phase of humanitarian emergencies. FUNDING: WHO Global Malaria Programme

    Developing African arbovirus networks and capacity strengthening in arbovirus surveillance and response: findings from a virtual workshop

    Get PDF
    This meeting report presents the key findings and discussion points of a 3-h virtual workshop, held on 21 September 2022, and organized by the "Resilience Against Future Threats through Vector Control (RAFT)" research consortium. The workshop aimed to identify priorities for advancing arbovirus research, network and capacity strengthening in Africa. Due to increasing human population growth, urbanization and global movement (trade, tourism, travel), mosquito-borne arboviral diseases, such as dengue, Chikungunya and Zika, are increasing globally in their distribution and prevalence. This report summarizes the presentations that reviewed the current status of arboviruses in Africa, including: (i) key findings from the recent WHO/Special Programme for Research & Training in Tropical Diseases (WHO/TDR) survey in 47 African countries that revealed deep and widespread shortfalls in the capacity to cope with arbovirus outbreak preparedness, surveillance and control; (ii) the value of networking in this context, with examples of African countries regarding arbovirus surveillance; and (iii) the main priorities identified by the breakout groups on "research gaps", "networks" and "capacity strengthening"

    Mapping Malaria Vector Habitats in West Africa: Drone Imagery and Deep Learning Analysis for Targeted Vector Surveillance

    Get PDF
    Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d’Ivoire were assembled and labeled using open-source tools. We developed and applied a workflow using region-of-interest-based and deep learning methods to identify land cover types associated with vector breeding sites from very-high-resolution natural color imagery. Analysis methods were assessed using cross-validation and achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies, respectively. This classifier consistently identified the presence of other land cover types associated with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings and 0.71 for roads. This study establishes a framework for developing deep learning approaches to identify vector breeding sites and highlights the need to evaluate how results will be used by control programs

    Technical Workflow Development for Integrating Drone Surveys and Entomological Sampling to Characterise Aquatic Larval Habitats of Anopheles funestus in Agricultural Landscapes in Côte d'Ivoire.

    Get PDF
    Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission. The typical breeding habitats of Africa's second most important malaria vector Anopheles funestus are large, semipermanent water bodies, which make them potential candidates for targeted larval source management. This is a technical workflow for the integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise An. funestus breeding sites near two villages in an agricultural setting in Côte d'Ivoire. Using satellite remote sensing data, we developed an environmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from June to August 2021. To categorise the drone imagery, we also developed a land cover classification scheme with classes relative to An. funestus breeding ecology. We sampled 189 potential breeding habitats, of which 119 (63%) were positive for the Anopheles genus and nine (4.8%) were positive for An. funestus. We mapped 30.42 km2 of the region of interest including all water bodies which were sampled for larvae. These data can be used to inform targeted vector control efforts, although its generalisability over a large region is limited by the fine-scale nature of this study area. This paper develops protocols for integrating drone surveys and statistically rigorous entomological sampling, which can be adjusted to collect data on vector breeding habitats in other ecological contexts. Further research using data collected in this study can enable the development of deep-learning algorithms for identifying An. funestus breeding habitats across rural agricultural landscapes in Côte d'Ivoire and the analysis of risk factors for these sites

    Cattle-related risk factors for malaria in southwest Ethiopia: a cross-sectional study.

    No full text
    BACKGROUND: Despite the low to moderate intensity of malaria transmission present in Ethiopia, malaria is still a leading public health problem. Current vector control interventions, principally long-lasting insecticidal nets and indoor residual spraying, when deployed alone or in combination, are insufficient to control the dominant vector species due to their exophagic and exophilic tendencies. Zooprophylaxis presents a potential supplementary vector control method for malaria; however, supporting evidence for its efficacy has been mixed. METHODS: To identify risk factors of malaria and to estimate the association between cattle and Anopheles vector abundance as well as malaria risk, a cross-sectional study was conducted in a village near Arba Minch, Ethiopia. Epidemiological surveys (households = 95, individuals = 463), mosquito collections using CDC light traps and a census of cattle and human populations were conducted. To capture environmental conditions, land cover and water bodies were mapped using satellite imagery. Risk factor analyses were performed through logistic, Poisson, negative binomial, and spatial weighted regression models. RESULTS: The only risk factor associated with self-reported malaria illness at an individual level was being a child aged 5 or under, where they had three times higher odds than adults. At the household level, variables associated with malaria vector abundance, especially those indoors, included socioeconomic status, the proportion of children in a household and cattle population density. CONCLUSIONS: Study results are limited by the low abundance of malaria vectors found and use of self-reported malaria incidence. Environmental factors together with a household's socioeconomic status and host availability played important roles in the risk of malaria infection in southwest Ethiopia. Cattle abundance in the form of higher cattle to human ratios may act as a protective factor against mosquito infestation and malaria risk. Humans should remain indoors to maximize potential protection against vectors and cattle kept outside of homes

    Replication Data for: Malaria transmission and prevalence in rice-growing versus non-rice-growing villages in Africa: a systematic review and meta-analysis

    No full text
    Rice fields in Africa are major breeding sites for malaria vectors. However, when reviewed in the 1990s, in settings where transmission was relatively intense, there was no tendency for malaria indices to be higher in villages with irrigated rice fields than in those without. Subsequently, intervention coverage in sub-Saharan Africa has been massively scaled up and malaria infection prevalence has halved. We re-examined this rice–malaria relationship to assess whether, with lower malaria transmission, malaria risk is greater in rice-growing than in non-rice-growing areas
    corecore