49,350 research outputs found

    Archetypal analysis of galaxy spectra

    Get PDF
    Archetypal analysis represents each individual member of a set of data vectors as a mixture (a constrained linear combination) of the pure types or archetypes of the data set. The archetypes are themselves required to be mixtures of the data vectors. Archetypal analysis may be particularly useful in analysing data sets comprising galaxy spectra, since each spectrum is, presumably, a superposition of the emission from the various stellar populations, nebular emissions and nuclear activity making up that galaxy, and each of these emission sources corresponds to a potential archetype of the entire data set. We demonstrate archetypal analysis using sets of composite synthetic galaxy spectra, showing that the method promises to be an effective and efficient way to classify spectra. We show that archetypal analysis is robust in the presence of various types of noise.Comment: 6 pages, 5 figures, 1 style-file. Accepted for publication by MNRA

    Energetic Components of Cooperative Protein Folding

    Full text link
    A new lattice protein model with a four-helix bundle ground state is analyzed by a parameter-space Monte Carlo histogram technique to evaluate the effects of an extensive variety of model potentials on folding thermodynamics. Cooperative helical formation and contact energies based on a 5-letter alphabet are found to be insufficient to satisfy calorimetric and other experimental criteria for two-state folding. Such proteinlike behaviors are predicted, however, by models with polypeptide-like local conformational restrictions and environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press

    Quantum pumping in graphene nanoribbons at resonant transmission

    Full text link
    Adiabatic quantum charge pumping in graphene nanoribbon double barrier structures with armchair and zigzag edges in the resonant transmission regime is analyzed. Using recursive Green's function method we numerically calculate the pumped charge for pumping contours encircling a resonance. We find that for armchair ribbons the whole resonance line contributes to the pumping of a single electron (ignoring double spin degeneracy) per cycle through the device. The case of zigzag ribbons is more interesting due to zero-conductance resonances. These resonances separate the whole resonance line into several parts, each of which corresponds to the pumping of a single electron through the device. Moreover, in contrast to armchair ribbons, one electron can be pumped from the left lead to the right one or backwards. The current direction depends on the particular part of the resonance line encircled by the pumping contour.Comment: 6 pages, 5 figures. This is an author-created, un-copyedited version of an article accepted for publication in EPL. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1209/0295-5075/92/4701

    Characteristics of an exploited tropical shallow - water demersal fish community in Malaysia

    Get PDF
    Trawling provided insights into the characteristics of an exploited tropical shallow-water demersal fish community. A total of 6,565 fish specimens weighing 285 kg were caught at 20 sampling stations. In all,139 species belonging to 50 families were recorded. The major families ranked by weight were Dasyatidae (19.7%), Synodontidae (18.3%), Paralichthyidae (8.9%), Dactylopteridae (8%), Nemipteridae (5.3%), Lagocephalidae (5.2%), Priacanthidae (5%); and Mullidae (4%). The overall fish trawled consisted of 53% food fish and 47% trash fish. The demersal fish community could be partitioned into four trophic groups, i.e., large zoobenthos feeders, intermediate predators, small demersal zoobenthos feeders and small demersal zooplankton feeders. Small crustaceans played an important role as food resources for all the trophic groups. They were the major food for small demersal zoobenthos feeders, the dominant group, and large zoobenthos feeders. Analysis of growth characteristics of ten common species using length-frequency data showed that Saurlda elongata and Trachlnocephalus myops ·(Synodontidae) and Dactyloptena orlentalis (Daetylopteridae) had higher growth rates than the other fishes in the community. Exploitation rates of these three species by trawlers were also high although they have little commercial value. Annual recruitment patterns. for the demersal fishes were generally protracted showing a single pulse, although some species have a second minor pulse

    Impact of the 3D source geometry on time-delay measurements of lensed type-Ia Supernovae

    Full text link
    It has recently been proposed that gravitationally lensed type-Ia supernovae can provide microlensing-free time-delay measurements provided that the measurement is taken during the achromatic expansion phase of the explosion and that color light curves are used rather than single-band light curves. If verified, this would provide both precise and accurate time-delay measurements, making lensed type-Ia supernovae a new golden standard for time-delay cosmography. However, the 3D geometry of the expanding shell can introduce an additional bias that has not yet been fully explored. In this work, we present and discuss the impact of this effect on time-delay cosmography with lensed supernovae and find that on average it leads to a bias of a few tenths of a day for individual lensed systems. This is negligible in view of the cosmological time delays predicted for typical lensed type-Ia supernovae but not for the specific case of the recently discovered type-Ia supernova iPTF16geu, whose time delays are expected to be smaller than a day.Comment: 7 pages, 4 figures, published in A&

    Exact States in Waveguides With Periodically Modulated Nonlinearity

    Get PDF
    We introduce a one-dimensional model based on the nonlinear Schrodinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi dn function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. Numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. Exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered . The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.Comment: EPL, in pres

    An Efficient Block Circulant Preconditioner For Simulating Fracture Using Large Fuse Networks

    Full text link
    {\it Critical slowing down} associated with the iterative solvers close to the critical point often hinders large-scale numerical simulation of fracture using discrete lattice networks. This paper presents a block circlant preconditioner for iterative solvers for the simulation of progressive fracture in disordered, quasi-brittle materials using large discrete lattice networks. The average computational cost of the present alorithm per iteration is O(rslogs)+delopsO(rs log s) + delops, where the stiffness matrix A{\bf A} is partioned into rr-by-rr blocks such that each block is an ss-by-ss matrix, and delopsdelops represents the operational count associated with solving a block-diagonal matrix with rr-by-rr dense matrix blocks. This algorithm using the block circulant preconditioner is faster than the Fourier accelerated preconditioned conjugate gradient (PCG) algorithm, and alleviates the {\it critical slowing down} that is especially severe close to the critical point. Numerical results using random resistor networks substantiate the efficiency of the present algorithm.Comment: 16 pages including 2 figure

    Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Get PDF
    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS)
    corecore