9 research outputs found

    Volcanic Stratigraphy and Age Model of the Kimama Deep Borehole (Project Hotspot): Evidence for 5.8 Million Years of Continuous Basalt Volcanism, Central Snake River Plain, Idaho

    Get PDF
    The Snake River Plain of central Idaho represents the world’s best example of a mantle hotspot track impinging upon continental crust and provides a record of bimodal volcanism extending over 12 Ma to the present. Project Hotspot recovered almost 2 km of continuous drill core from the Kimama borehole, located in central Idaho on the axial volcanic zone. The Kimama drill core represents the most complete record of mafic volcanism along the Yellowstone–Snake River Plain hotspot track. A total of 432 basalt flow units, representing 183 basalt flows, 78 basalt flow groups, and 34 super groups, along with 42 sediment interbeds are recognized using volcanic facies observations, stratigraphic relationships, borehole geophysical logs, and paleosecular variation in magnetostratigraphy. Rhyolite and other non-basaltic volcanic materials were not encountered in the drill core. Ages for six basalt lava flows were determined by 40Ar/39Ar using incremental heating experiments. Paleomagnetic inclination was measured on over 1200 samples collected at roughly 2-m-depth intervals, yielding mean values of paleosecular variation between ±50° to ±70° in Kimama flow groups, close to the expected 61° axial dipole average for the Kimama borehole location. Twenty-three magnetic reversals were identified and correlated to dated geomagnetic chrons and subchrons and compared with the 40Ar/39Ar radiometric ages. A linear fit to 40Ar/39Ar dates, geomagnetic chron and subchron boundaries, and volcanogenic zircon U-Pb ages defines a mean accumulation rate of ∼320 m/m.y. and extrapolates to a bottom hole age of 6.3 Ma. Average thicknesses of lithologic units increase from 2.7 m (sediment), 4 m (flow units), 10 m (flows), 23 m (flow groups), to 53 m (super groups). On average, one lava flow inundated the Kimama borehole location every 33 k.y. Intercalated sediments, ranging from 0.06 to 24.5 m thick, make up roughly 6% of the drill core and indicate lulls in local volcanic activity that may have lasted up to 77 k.y. Neutron and gamma-ray logs supplement observations from the drill cores: neutron logs document individual flow units through the contrast between massive flow interiors and more porous flow surfaces, and gamma-ray logs document the depth and thickness of sedimentary interbeds and high–K-Fe basalts. The 5.8 m.y. duration of basaltic volcanism in the Kimama drill core implies a steady rate of volcanism, indicating a relatively stable rate of mantle upflow along the lithosphere-mantle boundary in the wake of Yellowstone–Snake River Plain plume volcanism

    Owyhee River intracanyon lava flows: Does the river give a dam?

    No full text
    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales \u3e106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment to fill the blocked valley. Variations in this primary process of incision through the lava dams could be influenced by additional independent factors such as regional uplift, drainage integration, or climate that affect the relative base level, discharge, and sediment yield within the watershed. By redirecting the river, tributaries, and subsequent lava flows to different parts of the canyon, lava dams create a distinct valley morphology of flat, broad basalt shelves capping steep cliffs of Tertiary sediment. This stratigraphy is conducive to landsliding and extends the effects of intracanyon lava flows on channel geomorphology beyond the lifetime of the dams

    BaBar technical design report

    No full text
    corecore