3,044 research outputs found

    Charge Imbalance and Bilayer 2D Electron Systems at νT=1\nu_T = 1

    Full text link
    We use interlayer tunneling to study bilayer 2D electron systems at νT=1\nu_T = 1 over a wide range of charge density imbalance, Δν=ν1ν2\Delta \nu =\nu_1-\nu_2, between the two layers. We find that the strongly enhanced tunneling associated with the coherent excitonic νT=1\nu_T = 1 phase at small layer separation can survive at least up to an imbalance of Δν\Delta \nu = 0.5, i.e (ν1,ν2)(\nu_1, \nu_2) = (3/4, 1/4). Phase transitions between the excitonic νT=1\nu_T = 1 state and bilayer states which lack significant interlayer correlations can be induced in three different ways: by increasing the effective interlayer spacing d/d/\ell, the temperature TT, or the charge imbalance, Δν\Delta \nu. We observe that close to the phase boundary the coherent νT=1\nu_T = 1 phase can be absent at Δν\Delta \nu = 0, present at intermediate Δν\Delta \nu, but then absent again at large Δν\Delta \nu, thus indicating an intricate phase competition between it and incoherent quasi-independent layer states. At zero imbalance, the critical d/d/\ell shifts linearly with temperature, while at Δν\Delta \nu = 1/3 the critical d/d/\ell is only weakly dependent on TT. At Δν\Delta \nu = 1/3 we report the first observation of a direct phase transition between the coherent excitonic νT=1\nu_T = 1 bilayer integer quantum Hall phase and the pair of single layer fractional quantized Hall states at ν1\nu_1 = 2/3 and ν2=1/3\nu_2=1/3.Comment: 13 pages, 8 postscript figures. Final published versio

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Stereospecific Ring Contraction of Bromocycloheptenes through Dyotropic Rearrangements via Nonclassical Carbocation-Anion Pairs

    Get PDF
    Experimental and theoretical evidence is reported for a rare type I dyotropic rearrangement involving a [1,2]-alkene shift, leading to the regio- and stereospecific ring contraction of bromocycloheptenes. This reaction occurs under mild conditions, with or without a Lewis acid catalyst. DFT calculations show that the reaction proceeds through a nonclassical carbocation-anion pair, which is crucial for the low activation barrier and enantiospecificity. The chiral cyclopropylcarbinyl cation may be a transition state or an intermediate, depending on the reaction conditions

    Solar Fusion Cross Sections

    Get PDF
    We review and analyze the available information for nuclear fusion cross sections that are most important for solar energy generation and solar neutrino production. We provide best values for the low-energy cross-section factors and, wherever possible, estimates of the uncertainties. We also describe the most important experiments and calculations that are required in order to improve our knowledge of solar fusion rates.Comment: LaTeX file, 48 pages (figures not included). To appear in Rev. Mod. Phys., 10/98. All authors now listed. Full postscript version with figures available at http://www.sns.ias.edu/~jnb/Papers/Preprints/nuclearfusion.htm

    Single Incision Laparoscopic Colectomy: Technical Aspects, Feasibility, and Expected Benefits

    Get PDF
    Background. This paper studied technical aspects and feasibility of single incision laparoscopic colectomy (SILC). Methods. Bibliographic search was carried out up to October 2009 including original articles, case reports, and technical notes. Assessed criteria were techniques, operative time, scar length, conversion, complications, and hospitalization duration. Results. The review analyzed seventeen SILCs by seven surgical teams. A single port system was used by four teams. No team used the same laparoscope. Two teams used two laparoscopes. All teams used curved instruments. SILC time was 116 ± 34 minutes. Final scar was longer than port incision (31 ± 7 versus 24 ± 8 mm; P = .036). No conversion was reported. The only complication was a bacteremia. Hospitalization was 5 ± 2 days. Conclusion. SILC is feasible. A single incision around the umbilical scar represents cosmetic progress. Comparative studies are needed to assess potential abdominal wall and recovery benefits to justify the increased cost of SILC

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.

    Intramolecular locking and coumarin insertion: a stepwise approach for TADF design

    Get PDF
    Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by ‘locking’ the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet–triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. ‘Locking’ the molecular structure further lowers the singlet–triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission

    Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect

    Get PDF
    The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretch individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to appear in Science
    corecore