26 research outputs found

    Human Immunodeficiency Virus/Human Papillomavirus co-infection and host molecular genetics of cervical carcinoma

    Get PDF
    A subgroup of women who are co-infected with human immunodeficiency virus type 1 (HIV1) and human papillomavirus (HPV) progress relatively rapidly to cervical disease regardless of the number of absolute CD4 count. During infection, viral peptides are recognized by the host immune system. It is reasonable to propose that the development of viral-associated cancers, like cervical cancer, requires interference with specific immune-response genes. This thesis investigates this proposition with consideration of host molecular genetic alterations and variations of the human leukocyte antigen class II (HLA II) genes as one of the groups of immune-response genes that are involved in directing CD4 T-cell responses during infection, in the instance of cervical cancer progression in HIV-1/HPV co-infected women. Study I, reviewed the available literature on host molecular genetics and HIV-1/HPV coinfection on cervical cancer progression. This study suggests that the dual pro-oncogenic effects of HPV oncoproteins E6/E7 and the HIV-1 oncoprotein Tat, may exacerbate and accelerate the rate of cervical disease progression in a subgroup of HIV-1-positive women. Additionally, HIV-1-positive cervical cancer has three important carcinogenesis steps: firstly, HPV integration into the host genome, secondly, dual pro-oncogenic effects of HPV oncoproteins E6/E7, and the HIV-1 Tat oncoprotein in the host genome and, thirdly, the accumulation of repeated, unrepaired genetic mutations and genetic alterations within the host chromosomal DNA. Genetic variations or mutations that affect the following host gene categories were suggested to be responsible for cervical cancer susceptibility and disease progression; (i) genes for the immune-response against oncogenic HPV infection, (ii) oncogenes, (iii) tumour-suppressor genes, (iv) apoptosis-related genes, (v) DNA damagerepair genes, and (vi) cell cycle-regulatory genes. However, studies II, III and IV are linked together and listed according to the specific objectives of this thesis. Study II, characterized the distribution of HPV genotypes within cervical tumour biopsies from a cohort of 181 HPV-unvaccinated South African women and studied the relationships with HIV-1 infection, age of patients, absolute CD4 count, CD4 percentage and the stage of cervical disease, and identified the predictive power of these variables for cervical disease stage. Distribution of HPV genotypes was related to the stage of cervical disease in HIV-1-positive women. Older age was a significant predictor for invasive cervical cancer (ICC) in both HIV-1-seronegative (p28% CD4 cells (both p350 cells/µl compared to 30% (12/40) who possessed absolute CD4 count ≤ 350 cells/µl (both p< 0.001, q< 0.001). Study III, was the first case-control study to investigate the association of HIV-1/HPV coinfection with specific host HLA II-DRB1 and -DQB1 alleles in cervical cancer. Two hundred and fifty-six (256) women of the same ethnicity were recruited, comprising 56 cases and 200 age-matched controls. A total of 624 HLA-DRB1 and -DQB1 class II genotypes were studied. HLA II-DQB1*03:01 and -DQB1*06:02 alleles were associated with cervical cancer in HIV-1/HPV co-infected women (p=0.001 and p< 0.0001, respectively) while HLA II-DRB1*13:01 and -DQB1*03:19 were rare or absent in women with cervical disease when compared to the control population (p=0.012 and 0.011, respectively). Study IV, aimed to investigate the host genetic alterations that may be involved in rapid tumour progression in HIV-1/HPV co-infected women. The frequency of loss of heterozygosity (LOH) and microsatellite instability (MSI) at the HLA II locus on chromosome 6p was analysed in cervical tumour biopsy DNA, with regard to HIV-1/HPV co-infection in 164 women. Seventy-four women were HIV-1-positive and ninety women were HIV-1-seronegative. Tumour DNA from HIV-1/HPV co-infected women demonstrated a higher frequency of LOH/MSI at the HLA II locus at 6p21.21 than tumour DNA from HIV1-seronegative women (D6S2447, 74.2% versus 42.6%; p=0.001, q=0.003), D6S2881 at 6p21.31 (78.3% versus 42.9%; p=0.002, q=0.004), D6S1666 at 6p21.32 (79% versus 57.1%; p=0.035, q=0.052), and D6S2746, at 6p21.33 (64.3% versus 29.4%; p< 0.001, q< 0.001), respectively. This thesis provides novel insights and adds to the existing knowledge on the relationships between HIV-1/HPV co-infection, CD4 immune status, host HLA II allele variations and genetic alterations at chromosome 6p in association or likely protection to cervical disease in the studied cohort of South African women. Identification of host molecular genetic susceptibility to disease with regard to viral infection is important for individualized molecular targeted prevention of cervical cancer

    Vaginal microbiomes associated with aerobic vaginitis and bacterial vaginosis

    Get PDF
    A healthy vaginal microbiota is considered to be significant for maintaining vaginal health and preventing infections. However, certain vaginal bacterial commensal species serve an important first line of defense of the body. Any disruption of this microbial barrier might result in a number of urogenital conditions including aerobic vaginitis (AV) and bacterial vaginosis (BV). The health of the vagina is closely associated with inhabitant microbiota. Furthermore, these microbes maintain a low vaginal pH, prevent the acquisition of pathogens, stimulate or moderate the local innate immune system, and further protect against complications during pregnancies. Therefore, this review will focus on vaginal microbial “health” in the lower reproductive tract of women and on the physiological characteristics that determine the well-being of reproductive health. In addition, we explore the distinct versus shared characteristics of BV and AV, which are commonly associated with increased risk for preterm delivery

    A High-performance Thin Layer Chromatography Densitometric Method for the assay of Mebendazole Tablets

    Get PDF
    A simple, precise and accurate high-performance thin layer chromatographic (HPTLC) method was developed for the assay of mebendazole tablets. The separation was carried out by using HPTLC Silica gel 60 F254, (20 × 10 cm) with 250 μm thickness using ethyl acetate - ammonia 25% solution (25:0.5) as a mobile phase. HPTLC separation of the drug was followed by densitometry measurement at 310 nm. Mebendazole was satisfactorily resolved with retention factor (Rf) values of 0.51 ± 0.02. The method complied with International Conference on Harmonization acceptancecriteria for linearity (250 - 600 ng), precision, accuracy and specificity. Key words: HPTLC, method validation, assay, mebendazol

    A quantitative near infrared spectroscopy model for the assay of efavirenz in tablets

    Get PDF
    Near-infrared-spectroscopy combined with multivariate data analysis represents the most recent and efficient technology in analytical chemistry. The objective of this study was to utilize near infrared spectroscopy as an adapted technology for the quantitative assay of efavirenz. The study developed and validated a quantitative model for estimating the amount of efavirenz in efavirenz uncoated tablets. The quantification was based on the partial least squares algorithm and constructed by cross-validation. A UV spectrophotometric procedure was used as the reference method. Different pre-processing methods were employed in the development of calibration models. The best calibration model was that using partial least squares as the regression algorithm in association with Multiplicative Scattering Correction as the spectrum pre-processing method. The model estimators were: coefficient of determination (R²) 0.9815, standard error of cross validation 2.0346 and a factor of 5. The chosen model correlated well with the prediction results in accordance with the Mahalabinos distance limits. The developed NIR method allows the estimation of the amount of efavirenz in tablets without sample preparation thus proving to be a simple, fast and suitable method for the quantitative assay of efavirenz in uncoated tablets. Hence, NIR coupled with chemometric methods can be used for on-line, in-line or at-line monitoring of the manufacturing process and are helpful in achieving the goals of Process Analytical Technology.Keywords: Near Infrared Spectroscopy, chemometrics, multivariate data analysis, efavirenz, Partial Least Squares, cross validatio

    A Scoring Model and Protocol to Adapt Universal Screening for Lynch Syndrome to Identify Germline Pathogenic Variants by Next Generation Sequencing from Colorectal Cancer Patients and Cascade Screening

    Get PDF
    Identification of germline pathogenic variants (PV) predisposing to Lynch syndrome (LS) is an important step for effective use of cascade screening of extended at-risk lineages, leading to reduced morbidity and mortality due to colorectal cancer (CRC). As a general rule, however, next generation sequencing (NGS, either of gene panels or whole exomes) is relatively expensive and unaffordable for general clinical use. In resource-poor settings, performing NGS testing on an entire cohort of CRC patients, even if limited to those under 50 or 60 years of age, still places an enormous burden on limited resources. Although family history can be a good indicator for LS testing, identifying at-risk family members and offering cascade screening may not benefit many patients/probands without an obvious family history. This article presents a novel program called Modified Ascertainment and follow-up Program (MAP) with a scoring model for LS ascertainment and molecular screening by NGS with diagnosis confirmation of PV and cascade screening. The goal is to improve LS ascertainment in light of the growing burden of early-onset CRC, particularly in low- and middle-income countries. Through MAP, judiciously applied molecular genetics will improve identification of PV predisposing to LS and cascade screening

    Stability indicating liquid chromatographic method for determination of lamivudine and tenofovir disoproxil fumarate in fixed dose combination formulations

    Get PDF
    This study describes the development and validation of a stability indicating high performance liquid chromatographic method for the analysis of lamivudine and tenofovir disoproxil fumarate and their degradants. The method uses a Reprosil®-pur basic C18 column (250 mm × 4.6 mm, 5 μm) maintained at 30°C, methanol and a mixture of buffers (2.3 g/L ammonium dihydrogen phosphate and 1.32 g/L of diammonium hydrogen phosphate, pH 3.9) for gradient elution at a flow rate of 1.0 mL/min, and UV detection at 270 nm. Good separation of lamivudine and tenofovir disoproxil fumarate and their potential impurities was achieved. The stability indicating ability of the developed method was validated by subjecting both active ingredients to hydrolytic and oxidative stress conditions and separating the degradation products from their respective intact drugs. The calibration curve was linear over the 80-120 μg/mL concentration range for both active ingredients with r2&gt; 0.99. A recovery rate of 99.8 % for lamivudine and 99.3 % for tenofovir disoproxil fumarate confirmed the accuracy of the method for the simultaneous determination of both drugs in the fixed-dose combination.Keywords: Stability indicating liquid chromatography, lamivudine, tenofovir, validatio

    Genetic insights: High germline variant rate in an indigenous African cohort with early-onset colorectal cancer

    Get PDF
    IntroductionThe increase in incidence of colorectal cancer in young patients of African ancestry coupled with increased aggressiveness has warranted investigation of the heritable nature of these cancers. Only a limited number of published reports of hereditary colorectal cancer in indigenous African populations have been reported and no systematic screening of these groups has been performed previously. We aimed to investigate causative germline variants and to establish the incidence of pathogenic/likely pathogenic germline variants in the known colorectal cancer genes in indigenous African colorectal cancer patients using a next-generation sequencing (NGS) multigene panel.Materials and methodsPatients were selected from two hospitals in Cape Town and Johannesburg, South Africa. Patients with unresolved molecular diagnosis with an age of onset below or at 60 years were selected. Germline DNA samples were analyzed using a 14-gene NGS panel on the Ion Torrent platform. Variant calling and annotation were performed, and variants were classified according to the American College of Medical Genetics and Genomics guidelines. Observed variants were verified by Sanger sequencing and/or long-range PCR.ResultsOut of 107 patients, 25 (23.4%) presented with a pathogenic/likely pathogenic germline variant (PGV). Fourteen PGVs in at least one mismatch repair (MMR) gene were identified and verified in 12 patients (11.2%). Of these MMR gene variants, five were novel. The remaining 10 PGVs were in the APC, BMPR1A, MUTYH, POLD1, and TP53 genes.ConclusionThe high incidence of PGVs associated with early-onset colorectal cancer in indigenous African patients has important implications for hereditary colorectal cancer risk management. These findings pave the way for personalized genetic screening programs and cascade testing in South Africa. The next step would involve further screening of the unresolved cases using tools to detect copy number variation, methylation, and whole exome sequencing

    Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection

    Get PDF
    Funding Information: RFBR grant 17–54-30002, Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2019-1660) to Olga Smirnova. Publisher Copyright: © 2021, The Author(s).Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.publishersversionPeer reviewe

    A Scoring Model and Protocol to Adapt Universal Screening for Lynch Syndrome to Identify Germline Pathogenic Variants by Next Generation Sequencing from Colorectal Cancer Patients and Cascade Screening

    No full text
    Identification of germline pathogenic variants (PV) predisposing to Lynch syndrome (LS) is an important step for effective use of cascade screening of extended at-risk lineages, leading to reduced morbidity and mortality due to colorectal cancer (CRC). As a general rule, however, next generation sequencing (NGS, either of gene panels or whole exomes) is relatively expensive and unaffordable for general clinical use. In resource-poor settings, performing NGS testing on an entire cohort of CRC patients, even if limited to those under 50 or 60 years of age, still places an enormous burden on limited resources. Although family history can be a good indicator for LS testing, identifying at-risk family members and offering cascade screening may not benefit many patients/probands without an obvious family history. This article presents a novel program called Modified Ascertainment and follow-up Program (MAP) with a scoring model for LS ascertainment and molecular screening by NGS with diagnosis confirmation of PV and cascade screening. The goal is to improve LS ascertainment in light of the growing burden of early-onset CRC, particularly in low- and middle-income countries. Through MAP, judiciously applied molecular genetics will improve identification of PV predisposing to LS and cascade screening
    corecore