13,428 research outputs found

    Temperature controller for a fluid cooled garment

    Get PDF
    An automatic controller for controlling the inlet temperature of the coolant to a fluid cooled garment without requiring skin sensors is described. Temperature is controlled by the wearer's evaporative water loss rate

    A liquid cooled garment temperature controller based on sweat rate

    Get PDF
    An automatic controller for liquid cooled space suits is reported that utilizes human sweat rate as the primary input signal. The controller is so designed that the coolant inlet temperature is inversely proportional to the subject's latent heat loss as evidenced by evaporative water loss

    A study of the thermoregulatory characteristics of a liquid-cooled garment with automatic temperature control based on sweat rate: Experimental investigation and biothermal man-model development

    Get PDF
    Experimental results for three subjects walking on a treadmill at exercise rates of up to 590 watts showed that thermal comfort could be maintained in a liquid cooled garment by using an automatic temperature controller based on sweat rate. The addition of head- and neck-cooling to an Apollo type liquid cooled garment increased its effectiveness and resulted in greater subjective comfort. The biothermal model of man developed in the second portion of the study utilized heat rates and exchange coefficients based on the experimental data, and included the cooling provisions of a liquid-cooled garment with automatic temperature control based on sweat rate. Simulation results were good approximations of the experimental results

    Aerodynamic characteristics of airplanes at high angles of attack

    Get PDF
    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack

    Wind-tunnel free-flight investigation of a model of a spin-resistant fighter configuration

    Get PDF
    An investigation was conducted to provide some insight into the features affecting the high-angle-of-attack characteristics of a high-performance twin-engine fighter airplane which in operation has exhibited excellent stall characteristics with a general resistance to spinning. Various techniques employed in the study included wind-tunnel free-flight tests, flow-visualization tests, static force tests, and dynamic (forced-oscillation) tests. In addition to tests conducted on the basic configuration tests were made with the wing planform and the fuselage nose modified. The results of the study showed that the model exhibited good dynamic stability characteristics at angles of attack well beyond that for wing stall. The directional stability of the model was provided by the vertical tail at low and moderate angles of attack and by the fuselage forebody at high angles of attack. The wing planform was found to have little effect on the stability characteristics at high angles of attack. The tests also showed that although the fuselage forebody produced beneficial contributions to static directional stability at high angles of attack, it also produced unstable values of damping in yaw. Nose strakes located in a position which eliminated the beneficial nose contributions produced a severe directional divergence

    Summary of information on low-speed lateral-directional derivatives due to rate of change of sideslip beta prime

    Get PDF
    The results presented show that the magnitudes of the aerodynamic stability derivatives due to rate of change of sideslip become quite large at high angles of attack for swept- and delta-wing configurations, and that such derivatives have large effects on the calculated dynamic stability of these configurations at high angles of attack. The wind-tunnel test techniques used to measure the beta prime derivatives and various approaches used to predict them are discussed. Both the conventional oscillating-airfoil theory and the lag-of-the-sidewash theory are shown to be inadequate for predicting the vertical-tail contribution to the acceleration-in-sideslip derivative; a flow-field-lag theory, which is discussed, appears to give qualitative agreement with experimental data for a current twin-jet fighter configuration

    On data skewness, stragglers, and MapReduce progress indicators

    Full text link
    We tackle the problem of predicting the performance of MapReduce applications, designing accurate progress indicators that keep programmers informed on the percentage of completed computation time during the execution of a job. Through extensive experiments, we show that state-of-the-art progress indicators (including the one provided by Hadoop) can be seriously harmed by data skewness, load unbalancing, and straggling tasks. This is mainly due to their implicit assumption that the running time depends linearly on the input size. We thus design a novel profile-guided progress indicator, called NearestFit, that operates without the linear hypothesis assumption and exploits a careful combination of nearest neighbor regression and statistical curve fitting techniques. Our theoretical progress model requires fine-grained profile data, that can be very difficult to manage in practice. To overcome this issue, we resort to computing accurate approximations for some of the quantities used in our model through space- and time-efficient data streaming algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive empirical assessment over the Amazon EC2 platform on a variety of real-world benchmarks shows that NearestFit is practical w.r.t. space and time overheads and that its accuracy is generally very good, even in scenarios where competitors incur non-negligible errors and wide prediction fluctuations. Overall, NearestFit significantly improves the current state-of-art on progress analysis for MapReduce

    Breakdown of weak-field magnetotransport at a metallic quantum critical point

    Full text link
    We show how the collapse of an energy scale in a quantum critical metal can lead to physics beyond the weak-field limit usually used to compute transport quantities. For a density-wave transition we show that the presence of a finite magnetic field at the critical point leads to discontinuities in the transport coefficients as temperature tends to zero. The origin of these discontinuities lies in the breakdown of the weak field Jones-Zener expansion which has previously been used to argue that magneto-transport coefficients are continuous at simple quantum critical points. The presence of potential scattering and magnetic breakdown rounds the discontinuities over a window determined by tau Delta < 1 where Delta is the order parameter and tau is the quasiparticle elastic lifetime.Comment: 4 pages, 3 figures RevTeX forma

    Surface effects on nanowire transport: numerical investigation using the Boltzmann equation

    Full text link
    A direct numerical solution of the steady-state Boltzmann equation in a cylindrical geometry is reported. Finite-size effects are investigated in large semiconducting nanowires using the relaxation-time approximation. A nanowire is modelled as a combination of an interior with local transport parameters identical to those in the bulk, and a finite surface region across whose width the carrier density decays radially to zero. The roughness of the surface is incorporated by using lower relaxation-times there than in the interior. An argument supported by our numerical results challenges a commonly used zero-width parametrization of the surface layer. In the non-degenerate limit, appropriate for moderately doped semiconductors, a finite surface width model does produce a positive longitudinal magneto-conductance, in agreement with existing theory. However, the effect is seen to be quite small (a few per cent) for realistic values of the wire parameters even at the highest practical magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure
    • …
    corecore