1,825 research outputs found
Stochastic Dominance, Entropy and Biodiversity Management
In this paper we develop a model of population dynamics using the Shannon entropy index, a measure of diversity that allows for global and specific population shocks. We model the effects of increasing the number of parcels on biodiversity, varying the number of spatially diverse parcels to capture risk diversification. We discuss the concepts of stochastic dominance as a means of project selection, in order to model biodiversity returns and risks. Using a Monte Carlo simulation we find that stochastic dominance may be a useful theoretical construct for project selections but it is unable to rank every case.
Economic Growth and Threatened and Endangered Species Listings: A VAR Analysis
We conduct several analyses to examine the link between threatened and endangered species listings and macroeconomic activity. Preliminary tests using ordinary least squares are run on both time series data on the national level and cross sectional data at the state level. The analysis is then extended using vector autoregressive (VAR) techniques. VAR results, impulse response functions and variance decompositions are reported to shed more light on the causal relationships between threatened and endangered species, GDP and population. Our results indicate that there is little or no empirical evidence that GDP growth rates lead to changes in the number of threatened and endangered species listings.
Stochastic Dominance, Entropy and Biodiversity Management
In this paper we develop a model of population dynamics using the Shannon entropy index, a measure of diversity that allows for global and specific population shocks. We model the effects of increasing the number of parcels on biodiversity, varying the number of spatially diverse parcels to capture risk diversification. We discuss the concepts of stochastic dominance as a means of project selection, in order to model biodiversity returns and risks. Using a Monte Carlo simulation we find that stochastic dominance may be a useful theoretical construct for project selections but it is unable to rank every case. Key Words: Stochastic Dominance, Entropy, Biodiversity Management
Economic Growth and Threatened and Endangered Species Listings: A VAR Analysis
We conduct several analyses to examine the link between threatened and endangered species listings and macroeconomic activity. Preliminary tests using ordinary least squares are run on both time series data on the national level and cross sectional data at the state level. The analysis is then extended using vector autoregressive (VAR) techniques. VAR results, impulse response functions and variance decompositions are reported to shed more light on the causal relationships between threatened and endangered species, GDP and population. Our results indicate that there is little or no empirical evidence that GDP growth rates lead to changes in the number of threatened and endangered species listings. Key Words: Economic growth, endangered and threatened species, vector autoregression
The state-contingent approach to production under uncertainty
The central claim of this paper is that the state-contingent approach provides the best way to think about all problems in the economics of uncertainty, including problems of consumer choice, the theory of the firm, and principal–agent relationships. This claim is illustrated by recent developments in, and applications of, the state-contingent approach.risk, state-contingent production, uncertainty, Risk and Uncertainty,
A decreased probability of habitable planet formation around low-mass stars
Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain
the substantial atmospheres and ongoing tectonic activity probably required to
support life. A key element in determining if sufficiently massive "sustainably
habitable" planets can form is the availability of solid planet-forming
material. We use dynamical simulations of terrestrial planet formation from
planetary embryos and simple scaling arguments to explore the implications of
correlations between terrestrial planet mass, disk mass, and the mass of the
parent star. We assume that the protoplanetary disk mass scales with stellar
mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h
< 2, so that disk mass decreases with decreasing stellar mass. We consider
systems without Jovian planets, based on current models and observations for M
stars. We assume the mass of a planet formed in some annulus of a disk with
given parameters is proportional to the disk mass in that annulus, and show
with a suite of simulations of late-stage accretion that the adopted
prescription is surprisingly accurate. Our results suggest that the fraction of
systems with sufficient disk mass to form > 0.3 Earth mass habitable planets
decreases for low-mass stars for every realistic combination of parameters.
This "habitable fraction" is small for stellar masses below a mass in the
interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval
that excludes most M stars. Radial mixing and therefore water delivery are
inefficient in lower-mass disks commonly found around low-mass stars, such that
terrestrial planets in the habitable zones of most low-mass stars are likely to
be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure
Landslide assessment through integrated geoelectrical and seismic methods: a case study in Thungsong site, southern Thailand
Many landslides can cause significant damage to infrastructure, property, and human life. To study landslide structure and processes, geophysical techniques are most productive when employed in combination with other survey and monitoring tools, such as intrusive sampling. Here, the integration of electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods is used to assess landslides in Thungsong district, Nakhon Si Thammarat, the south of Thailand, where is a hilly and seasons of prolonged rainfall region. The 2D cross-plot analysis of P-wave velocity and resistivity values obtained by these two methods is introduced to identify potential landslide-prone zones in this region. The results of the 2D cross-plot model reveal detailed image of the subsurface conditions, highlighting areas of low P-wave velocity (lower than 600 m/s) and low resistivity (lower than 600 Ωm). These areas are indicative of weak zone and are potential to be sliding materials. Moreover, an intrusive sampling data from boreholes is also used for the calibration and validation geophysical data with geological data. This can improve the accuracy of landslide assessment and develop effective mitigation strategies to reduce the risk of landslides in this area. In addition of the 2D cross-plot, the volume of sliding material is also determined from the difference of the surface and slipping plane elevations. The volume calculation of sliding material is roughly 33447.76 m3. This approach provides a preliminary tool for landslide studies and monitoring landslides in this region, thus enabling an improved understanding of slope failure processes in this context, and the basis of a landslide mitigation strategy in the future
Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state
A mixing model derived from first principles describes the bulk density ( BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1 / [LOI/k(1) + (1-LOI) / k(2)], where k(1) and k(2) are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78 % of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k(1) and k(2) were estimated to be 0.085 + / - 0.0007 g cm(-3) and 1.99 + / - 0.028 g cm(-3), respectively. Based on the fitted organic density (k(1)) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is \u3c = 0.3 cm yr (-1). Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k(2) to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr(-1). Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr(-1) under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root: shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events
New block-based blind equalization algorithms
New block-based blind
equalization algorithms are introduced
based upon the cost function underlying
the recently proposed soft constraint
satisfaction blind equalization algorithm.
The derivation of these .algorithms is
based on mapping the original constrained
optimization problem in CN into a much
simpler optimization problem in W2.
Versions of the new algorithms are also
developed for fractionally-spaced
equalizers. Simulations on a baud-spaced
and a fractionally-spaced channel support
the potential of the resulting block-based
techniques
- …