44 research outputs found

    Ontogeny of body size and shape of Antarctic and subantarctic fur seals

    Full text link
    Pre- and post-weaning functional demands on body size and shape of mammals are often in conflict, especially in species where weaning involves a change of habitat. Compared with long lactations, brief lactations are expected to be associated with fast rates of development and attainment of adult traits. We describe allometry and growth for several morphological traits in two closely related fur seal species with large differences in lactation duration at a sympatric site. Longitudinal data were collected from Antarctic (Arctocephalus gazella (Peters, 1875); 120 d lactation) and subantarctic (Arctocephalus tropicalis (Gray, 1872); 300 d lactation) fur seals. Body mass was similar in neonates of both species, but A. gazella neonates were longer, less voluminous, and had larger foreflippers. The species were similar in rate of preweaning growth in body mass, but growth rates of linear variables were faster for A. gazella pups. Consequently, neonatal differences in body shape increased over lactation, and A. gazella pups approached adult body shape faster than did A. tropicalis pups. Our results indicate that preweaning growth is associated with significant changes in body shape, involving the acquisition of a longer, more slender body with larger foreflippers in A. gazella. These differences suggest that A. gazella pups are physically more mature at approximately 100 d of age (close to weaning age) than A. tropicalis pups of the same age<br /

    Too much information is no information: how machine learning and feature selection could help in understanding the motor control of pointing

    Get PDF
    © 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The aim of this study was to develop the use of Machine Learning techniques as a means of multivariate analysis in studies of motor control. These studies generate a huge amount of data, the analysis of which continues to be largely univariate. We propose the use of machine learning classification and feature selection as a means of uncovering feature combinations that are altered between conditions. High dimensional electromyogram (EMG) vectors were generated as several arm and trunk muscles were recorded while subjects pointed at various angles above and below the gravity neutral horizontal plane. We used Linear Discriminant Analysis (LDA) to carry out binary classifications between the EMG vectors for pointing at a particular angle, vs. pointing at the gravity neutral direction. Classification success provided a composite index of muscular adjustments for various task constraints—in this case, pointing angles. In order to find the combination of features that were significantly altered between task conditions, we conducted a post classification feature selection i.e., investigated which combination of features had allowed for the classification. Feature selection was done by comparing the representations of each category created by LDA for the classification. In other words computing the difference between the representations of each class. We propose that this approach will help with comparing high dimensional EMG patterns in two ways; (i) quantifying the effects of the entire pattern rather than using single arbitrarily defined variables and (ii) identifying the parts of the patterns that convey the most information regarding the investigated effects.Peer reviewe

    Informatisation du circuit du médicament (hors chimiothérapie) au Centre Léon Bérard [de Lyon]

    No full text
    LYON1-BU Santé (693882101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Petit Séminaire de Saint-Riquier. Vers lus dans la séance académique du 14 avril 1858. Souvenirs et Regrets. (Signé : N. Chambellant.)

    No full text
    Appartient à l’ensemble documentaire : Picardi1Avec mode text

    Selection of diving strategy by Antarctic fur seals depends on where and when foraging takes place

    No full text
    We investigated the spatial and temporal distribution of foraging effort by lactating Antarctic fur seals Arctocephalus gazella at Heard Island using satellite telemetry and time-depth recorders. Two principal diving types were identified: ‘deep’ dives averaging 48.6 m, and ‘shallow’ dives averaging 8.6 m. Discriminant function analyses were used to assign dives based on their depth and duration. Generalised linear mixed-effects models of night dives (>80% of all dives) indicated both spatial and temporal effects on the distribution of deep and shallow dives. Deep dives were more common in the deeper shelf waters of the Kerguelen Plateau, and these dives predominantly occurred after sunset and before sunrise. In contrast, shallow dives were more common in slope waters on the southeastern margin of the Kerguelen Plateau in the hours either side of local midnight. We suggest that these 2 distinct diving types reflect the targeting of channichthyid (deep dives) and myctophid (shallow dives) fish, and are indicative of spatial and temporal differences in the availability of these 2 important prey groups. We also identified 3 distinct behavioural dive groups (based on multidimensional scaling of 19 diving and foraging trip parameters) that also differed in their spatial distribution and in their relative importance of deep and shallow dives. The present study provides some of the first evidence that diving strategies are not only influenced by where foraging takes pace, but also when.Simon D. Goldsworthy, Brad Page, Andrew Welling, Magaly Chambellant, Corey J. A. Bradsha
    corecore