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motor control of pointing
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The aim of this study was to develop the use of Machine Learning techniques

as a means of multivariate analysis in studies of motor control. These studies

generate a huge amount of data, the analysis of which continues to be largely

univariate. We propose the use of machine learning classification and feature

selection as ameans of uncovering feature combinations that are altered between

conditions. High dimensional electromyogram (EMG) vectors were generated

as several arm and trunk muscles were recorded while subjects pointed at

various angles above and below the gravity neutral horizontal plane. We used

Linear Discriminant Analysis (LDA) to carry out binary classifications between

the EMG vectors for pointing at a particular angle, vs. pointing at the gravity

neutral direction. Classification success provided a composite index of muscular

adjustments for various task constraints—in this case, pointing angles. In order

to find the combination of features that were significantly altered between task

conditions, we conducted a post classification feature selection i.e., investigated

which combination of features had allowed for the classification. Feature selection

was done by comparing the representations of each category created by LDA

for the classification. In other words computing the di�erence between the

representations of each class. We propose that this approach will help with

comparing high dimensional EMG patterns in two ways; (i) quantifying the e�ects

of the entire pattern rather than using single arbitrarily defined variables and (ii)

identifying the parts of the patterns that convey the most information regarding

the investigated e�ects.

KEYWORDS

motor control, machine learning, feature selection, pointing, explainable machine

learning

1. Introduction

Movement takes place through the contractions of several muscles which then cause

the displacement of several body segments. Much pain and energy therefore goes into the

simultaneous collection of the variables connected with motor control studies. Curiously

despite the energy invested in the synchronization of the data collection and the big data

tables created by such experiments, the analysis of it largely takes place in a univariate
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manner. In this study we propose the use of Machine Learning

classification as a technique able to provide insights concerning

global features of the voluminous datasets created from motor

control studies. The use of these techniques with movement

data is not new. However, it has been principally in the realm

of application, largely unconcerned with questions concerning

underlying mechanisms (Phinyomark and Scheme, 2018; Côté-

Allard et al., 2019; Parajuli et al., 2019; Labarrière et al., 2021;

Xiong et al., 2021). Compared to this, there are few studies using

Machine Learning dedicated to the purpose of understanding the

mechanisms underlying movement. There are many advantages to

be gained from exploring this technique for understanding motor

control. First, Machine Learning allows for the combination of

variables in analyses hence providing the means for a global view.

This is similar to the manner in which humans make decisions—

weighing the input from a combination of features before arriving

at a conclusion (Drugowitsch et al., 2014; Mercier and Cappe,

2020). Second, linear or nonlinear feature combinations of variables

could allow for significant differences in cases where they would

not individually. Thirdly, with a technique of classification and

then feature analysis, we are using an approach that is more in

keeping with the current spirit of “big data”. Rather than imposing

previously held views concerning which variables are important, we

allow this information to emerge from an understanding of which

variable combination is important for classification. This process

of identifying the features which are important for classification

is an important field in Machine Learning called feature selection

(Guyon and Elisseef, 2003; Saeys et al., 2007; Hira and Gillies, 2015;

Jović et al., 2015; Venkatesh and Anuradha, 2019).

The motor control task studied in this paper was one

of pointing in different directions. Subjects pointed in the

gravity neutral horizontal dimension of 90◦ and then at 180◦

(vertically downwards), 135◦, 45◦ and 0◦ (vertically upwards)

(Figure 1). These four directions entailed gravity constraints of

varying degrees. Since the electromyographic activity (EMG)

of nine muscles were recorded at high frequency (1,000Hz)

during pointing, each movement was associated with several high

dimensional vectors for each subject. Although they have much

to offer in the way of understanding motor control, EMG signals

are not used as often as kinematic data in part due to their

high complexity and intra and inter subject variability (Latash,

2012; Hagen and Valero-Cuevas, 2017). The experimental results

describing the kinematic aspects of this current study have been

published (Gaveau et al., 2016).

Machine learning was used to analyse the data as it would

provide us with a means of conducting a simultaneous analysis

of all the recorded EMGs. The task was approached as a binary

discrimination task with each case being the classification of EMGs

in the gravity neutral direction of 90◦ compared to pointing at

180◦, 135◦, 45◦, or 0◦. Importance was given to the use of Linear

Discriminant Analysis (LDA) as the algorithm for classification.

In LDA, the means and variance of each group are used to

construct models of each group which are multivariate Gaussians.

The probability of a data point belonging to one class or the other

is then computed with the help of the Bayes factor (Grimm and

Yarnold, 2006; Johnson and Wichern, 2007; Izenman, 2013). This

is a relatively old algorithm and several previous studies including

some of our own have shown that more recent techniques like the

kernel methods (Support Vector Machines belong to this group

of methods) or random forest trees provide better classification

(Statnikov et al., 2008; Nair et al., 2010; Heung et al., 2016; Han

et al., 2017; Uddin et al., 2019). We nevertheless chose to work

with this technique due to its ease of application especially with

regards to feature selection. We also hope that its conceptual

connection with classical univariate statistics would also encourage

the greater use of machine learning in the basic science studies of

motor control.

Once the classification has been performed we proceeded

to identify the feature combination which had allowed for

discrimination. This process of feature selection in the field

of engineering is largely for the purpose of reducing the size

of datasets and hence speeding up classification. These efforts

therefore concentrate on picking the minimum number of features

necessary for classification. In contrast, the application of such

techniques to the basic sciences, would require an identification

of several of the features/feature combinations which have been

altered. Standard features selection techniques can be grouped

into the categories of filter, wrapper and embedded techniques.

Review articles which explain the central philosophies of each of

these techniques can be found in several previous publications

(Guyon and Elisseef, 2003; Saeys et al., 2007; Hira and Gillies,

2015; Jović et al., 2015; Remeseiro and Bolon-Canedo, 2019;

Venkatesh and Anuradha, 2019). Filter methods are usually pre

machine learning methods which first assign a statistical score

to each feature. They are generally used as a pre-processing

step and selection of features is independent of any machine

learning algorithms. The features are then ranked according to

these scores and the features which are within a cutoff threshold

are kept. These methods are often univariate. Some examples are

the chi squared test and correlation coefficient score. Wrapper

methods are based on the results obtained from machine learning

algorithms. Through recursive processes, the method uses various

search methods to assemble feature combinations which are

then tested using the classification algorithm. Putting together

the feature combinations can range from greedy algorithms like

sequential forward selection or more optimized search methods

like randomized hill climbing. In embedded techniques, the

search for the optimal feature combination for classification is

done as the machine learning algorithm is being constructed.

Regularization methods are embedded feature selection methods.

Such methods give a weight to each feature that the learning

algorithm optimizes, so that the unimportant features have a close

to zero weight and are eliminated from the algorithm calculations.

Examples of such algorithms are LASSO (Least Absolute Shrinkage

and Selection Operator) (Tibshirani, 1996) and ridge regression

(Hoerl and Kennard, 1970). The feature selection method used

in this study would fall under the embedded method category.

Classification begins with a full feature vector. The differences

between the models of each class created by LDA is then used

to find the group of important features. We chose this method

because it was in keeping with intentions of finding feature

combinations which are altered between task conditions and to

avoid making pre-suppositions concerning altered features. A

successful categorization indicates the presence of information
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FIGURE 1

(A) Participants were seated with a hand held horizontally in front of them. They were then asked to point to targets placed at 180◦, 135◦, 45◦, and 0◦

(B) Approximate positions of recorded muscles.

which is discriminatory between two groups. The representation

of each category can then be analyzed for finding the most relevant

features to classification.

There is a good deal of information available concerning

EMG activation patterns during pointing in different directions.

These studies have helped to tease out the portion of muscular

control which is involved in postural aspects of the movement

from the aspects which are specifically related to directional

tuning. The former, tonic EMGs, do not scale with task

constraints such as speed while the latter, phasic EMGs, do

so. These studies have also identified muscular alterations for

pointing direction (Flanders, 1991; Flanders and Herrmann,

1992; Buneo et al., 1994, 2008; Flanders et al., 1996). Work

by Gaveau et al. has shown how differences in the kinematics

and muscular activity of downward and upward pointing

can be related to the minimization of effort (Gaveau et al.,

2016, 2021; Poirier et al., 2022a). The group also showed

how this minimization is altered with age (Poirier et al.,

2022b).

Almost all the studies in motor control are univariate, following

the traditional pattern of picking variables based on pre-conceived

notions and comparing them using traditional statistics. An

important exception to this has been the work using principle

component techniques and its variants. This technique has also

provided a composite image of muscular alterations during

pointing by finding components which capturemost of the variance

in the data. Data dimensionality reduction in this technique has

focused on finding a few synergies that can then be scaled to

reproduce EMG patterns for several constraints (d’Avella et al.,

2010, 2011; Delis et al., 2018). Themain difference between this sort

of technique and the Machine Learning Classification and feature

selection techniques, is the nature of the focus on the data. While

the former is primarily concerned with correlations and global

similarities, the latter is concerned with global differences. Here
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we will illustrate the novelty of this approach by using LDA to ask

the following question - What are the muscular differences when

pointing at a particular angle compared to pointing in a gravity

neutral direction?

The aim of this study is to investigate how LDA classification

can be used to pick out the muscle combinations and temporal

segments of EMG data that are most pertinent to changing pointing

direction. Since the technique is able to provide composite indices

of performance such as classification accuracy, or distance between

models, we also aim to use these as a guide on global trends in

muscular modifications for changing pointing directions.

2. Method

The aim of this project is to use Machine Learning in order

to understand how muscle organization changes as a function of

pointing direction. In order to do so, we will investigate if the class

representations created during Machine Learning can be exploited

for finding the features/muscles that are adapted for pointing

direction. To this end, we will:

• Describe how the kinematic and EMG data were collected.

Markers placed on the arm recorded kinematic data and

hence allowed the researchers to verify the direction of arm

movement. This section will only be brief as a detailed

description of the kinematic aspects of the current study have

already been published (Gaveau et al., 2016).

• Describe the pre-processing of the EMG data

• Describe how the data was organized as input for the machine

learning classification

• Provide a brief description of the LDA algorithm

• Describe the technique of feature selection through the

comparison of models created of each class by LDA.

2.1. Data acquisition

The input dataset used for the current investigation came from

a previous study (Gaveau et al., 2016) which had been approved

by the regional ethics committee of Burgundy. Data collection

was carried out in keeping with regional and international

norms (Declaration of Helsinki, 1964). It consisted of kinematics

values and EMG signals recorded from 11 right handed healthy

participants of mean age 24± 3.2 years (9 female, 2 male) who had

given their written consent for the study. Right handed preference

was evaluated by the Edinburg test (individual scores >0.86;

Oldfield, 1971).

The participants pointed in different directions from a seated

position. They were seated with a hand held horizontally in front

of them. They were then asked to point to targets placed at 180◦,

135◦, 45◦, and 0◦as shown in Figure 1. The order of pointing in

different directions was randomized. There were nine trials for

each angle. The movements of the arm were followed through

the use of kinematic markers placed on the shoulders, arm and

hand of the subjects. For our purpose, we were only interested

in the hand marker placed on the first metacarpo-phalageal joint.

The trajectory of the marker was recorded using an optoelectronic

system (Smart BTS Italy) with 4 cameras sampling at 120Hz. The

X, Y, and Z coordinates of the markers throughout the pointing

movement were stored to identify the direction of pointing.

Movement onset and offset were defined as the time at which

hand tangential velocity went above or fell below 5% of maximum

hand velocity.

The EMG data was obtained from surface electrodes placed on

9muscles using the Aurion, Zerowire EMG at a sampling frequency

of 1000Hz. The muscles recorded from were the anterior deltoid

(AD), posterior deltoid (PD), medial deltoid (MD), pectoralis

major (PM), latissimus dorsi (LD), trapezius (Tr), biceps brachii

(BB), long triceps (TL) and short triceps (TS). We applied the

following standard procedures to the EMG data. They were band

pass filtered with a bandwidth from 20 to 300Hz, using the

“butter” and “filtfilt” functions in Matlab. Before integrating the

signal using a sliding window of 5ms, each EMG signal was

cut off 200ms before movement onset and at movement offset.

Finally, EMG data were filtered one more time to obtain smooth

patterns (low-pass 5Hz). Interpolation was used to place all

the collected time series on a common time base. i.e., duration

was normalized.

2.2. Classification

All the classifications carried out in this study were binary

classifications. Muscular activity for pointing at 90◦was

chosen as a reference direction. This was done because

horizontal arm movements are gravity neutral whereas

movements in the other directions move the arm in or

against the direction of gravity. So the binary classifications

carried out were 90◦vs 180◦, 135◦, 45◦, and 0◦. A succinct

description of the steps taken for the LDA analysis are

the following

1. For each subject, normalize the EMG amplitudes for each

muscle so that the maximum amplitude is 1 and the minimum

is−1.

2. Link the EMGs for all the muscles of each trial to create

input vectors

3. Divide the subjects into five folds

4. Keep four folds for training and the remainder for testing

5. Using the Matlab LDA algorithm, create representations of

each class only using the four training folds.

6. Verify goodness of this representation by testing classification

using the remaining test fold.

7. To obtain the LDAdiff vector subtract the representations of

each category

8. Portions of the LDAdiff vector which have a high amplitude

indicate importance in classification. A cutoff margin can

therefore be progressively lowered to pick out the most

important portions of the LDAdiff vector (a schematic

representation of the feature selection process can be seen in

Figure 2).

9. Repeat the process with the next training and testing fold.

More details of each step are provided in the sections below.
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FIGURE 2

Flow diagram describing procedure for picking out portions of the input vector which are the most important for classification.

2.2.1. Input data organization
Input data was organized as was done in many of our previous

studies (Nair et al., 2010; Tolambiya et al., 2011, 2012; Laroche et al.,

2014). The input vectors for classification algorithm were created

through the concatenation of the kinematic or EMG time series for

each trial. As explained in the data acquisition section above, the

time series for each variable was a vector of 1000 elements. So for

example, taking the case of the kinematic data, the input vector for

each trial was 3000 elements long as we concatenated the X, Y, and

Z time series for a trial. Since a subject pointed to each direction

9 times, the total kinematic matrix for each subject was 9 × 3000

for one angle. The same was done for the EMGs. Since there were

nine muscles, the EMG vector for each trial was composed of 9000

elements and the EMG matrix for one direction was 9 × 9000 for

each subject.

It is to be noted that throughout the study we kept the entire

time series of any sensor rather than using condensed features such

as averages or frequencies. We also did not use features extraction

techniques like PCAs to reduce dimensionality. This was done so as

to facilitate the task of identifying the features which are important

for the classification, not only in terms of muscles but also in terms

of when the important muscular modifications took place.

The study was done using 5 fold cross validation. Due to the

awkward number of participants, four of the folds had two subjects

while the final fold had 3. In accordance with cross validation

protocol, every trial was sometimes used as training data and other

times as testing data. However, there were no classification tests in

which data played both training and testing roles at the same time.

Accuracy was computed as the mean accuracy over all test sets.

As is the case for most studies on Machine Learning the data was

normalized so as to give equal importance to each muscle. For each

individual and each muscle, the maximum EMG amplitude was

given the value 1 and a value of −1 was assigned to the minimum.

The normalization was done over all trials and separately for each

class of binary classification. Note that this form of normalization

allows each muscle to have equal importance in classification. It

also preserves differences in EMG amplitude when pointing in

different directions.

2.2.2. Linear discriminant analysis for
classification and feature selection

Classification and feature selection was done using Linear

Discriminant Analysis (LDA) (Grimm and Yarnold, 2006; Johnson

and Wichern, 2007; Izenman, 2013). As already mentioned in

the methods section, all classification was binary. If we have a

p dimensional vector x, the class k to which it belongs can be

determined by computing the posterior probability that it belongs

to a class Y= k by using Bayes rule. In this case x is an EMG vector

and Y would be either 90◦ or the other angle with which we are

conducting the binary classification. The conditional probabilities

that x belongs to k = 90◦ or k = another angle are computed

and compared using Bayes factor (equation 1). The conditional

probability that given the EMG vector x, pointing would have been

done in the direction k is given by the equation

Pr
(

Y = k
∣

∣X = x
)

=
fk(x)πk

∑k
l=1 fl(x)πl

(1)

Where fk(x) is the density function of x. We can think of it as

the model that LDA is using to represent each class k. It is the

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.921355
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Thomas et al. 10.3389/fdata.2023.921355

multivariate Gaussian of the data in each class.

fk (x) =
1

2π
p
2 |6|

1
2

e
−(x−µk)

T

2

∑−1
k (x−µk) (2)

where µk the mean of the class and 6 is the p x p covariance matrix

of x.

The variable πk is the prior probability for class k. It is

computed as the proportion of samples belonging to class k

πk =
Number of samples in class k

Total number of samples
(3)

In our case, as there is an equal number of samples for each class,

this factor was always 0.5. The conditional probability for x would

have to be computed for 90◦ as well as the second angle being

considered and x would belong to the class Y = k with the highest

posterior probability

Y = argmaxT kPr
(

Y = k
∣

∣X = x
)

(4)

Feature selection was done by computing the variable LDAdiff ,

obtained by comparing the models of each class created by LDA.

This was the difference between the mean vector µ of each

category which had been used by LDA to model each group. A

schematic diagram of this process can be seen in Figure 2. So if

we were comparing the EMGs for pointing in two directions k1

and k2

LDAdiff = |µk1 − µk2| (5)

The cutoff threshold for finding the High Diff and Low Diff

vectors from LDAdiff was found in an iterative manner. It started

at a high threshold value and was lowered step by step until

the classification using the features above threshold was higher

than what was obtained using the features below. Vectors that

contain features above the cutoff threshold were called High

Diff vectors, and those below, Low Diff vectors. Muscles which

contained parts of the High Diff or Low Diff vectors were

called High Diff or Low Diff muscles. The capacity of these

EMG vectors to predict task constraints is reported in the

Results section.

To obtain an idea of the composite difference between classes,

we also computed another variable which we called the LDAdistance.

It was the sum of all the values in LDAdiff .

LDAdistance =
∑p

i=1
|µk1 − µk2|i (6)

The LDA algorithm was implemented using Matlab (The

MathWorks, Inc., Natick, Massachusetts, United States).

2.2.3. Statistics
In keeping with the categorical nature of classification, the

statistics for the study were primarily done using the χ2 test

i.e., by comparing the number of wrong vs. right answers. When

comparing the classification results for two different angles, we

constructed contingency tables for the number of right vs. wrong

FIGURE 3

(A) Classification accuracies from binary classifications between

EMGs from pointing at 90◦ vs. 180◦, 135◦, 45◦, and 0◦. Of note was

the lack of significant di�erences between pointing at 180◦ and 0◦ (p

> 0.05, χ2 test). (B) The values of LDAdistance obtained from the same

classifications which were performed for (A). While the

classifications accuracies are similar for downward and upward

pointing directions, the LDAdistance variable shows that when

compared to pointing in the gravity free horizontal dimension, EMG

adjustments were greater when pointing downwards at 180◦ than

when pointing upwards at 0◦ (p < 0,05, Friedmann, followed by

Wilcoxon planned comparison). All values represented in the figure

are the means ± standard error of the mean.

answers for each angle (Howell, 1992; Hinton, 1995). In the case

of multiple comparisons, where we compared the classification

accuracies at several angles, we applied the Bonferroni correction

(Dunn, 1961; Goeman and Solari, 2014). Since this involve four

pointing directions, results were significant if p < 0.0125. As

Figure 3B did not involve accuracies but a continuous variable, we

used the Friedmann test followed by a planned comparison of the

LDAdistance for the classification at 180◦ vs. 0◦. The result was taken

to be significant if p < 0.05.

3. Results

In this section we will present the results from analyzing the

kinematics and EMG activities for different pointing directions. In

each case, we will start out with the classification results of a full

vector with all the features before comparing the models of each

category to pick out the combination of features that are the most

different between two task conditions, in other words, computing

the LDAdiff vector. This will then be followed by a comparison

of the classification with the High Diff time series compared to

classification with the Low Diff time series, the time series being

either a muscle EMG or a kinematic time series. The investigation
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FIGURE 4

An example of a di�erence vector obtained by subtracting

representations of each category following binary clasification of

XYZ coordinates from kinematic markers from pointing toward 180◦

and 0◦.

of this technique will first start with the easier example of automatic

classification using the kinematic features from pointing in two

clearly different directions. We will first predict using all the data

from the kinematic markers if subjects had pointed upwards or

downwards. Once we obtain success with this easier example which

would serve as an essential proof of concept, we will move on

to the more difficult task of automatic identification with the

EMG time series for the pointing directions of 180◦, 135◦, 45◦,

and 0◦.

3.1. The kinematics of pointing upwards vs.
downwards

In this section we used the kinematic information from a

marker placed on the index finger of subjects to classify if the

subjects had pointed downwards (180◦) or upwards (0◦). The input

vector for classification was a time series of the XYZ coordinates of

this marker from the start of pointing movement to the maximum

pointing amplitude. The classification accuracy obtained using

LDA was 100%.

The next step was to use LDAdiff to identify the features

which were most relevant to this classification. Figure 4 displays

the difference vector obtained from comparing the LDA created

representations at 180◦ vs. 0◦. A visual inspection of the LDA

difference vector showed a much bigger amplitude of LDAdiff for

the Y coordinate, while the differences for the X and Z dimensions

were very low. According to our hypothesis, this indicated that the

features most altered between the 2 pointing directions were those

associated with the Y coordinate while the time series from the

X and Z coordinates stayed relatively unchanged. This hypothesis

was confirmed by an attempt at classification with the High Diff

Kinematic time series (time series of Y coordinates) vs. the Low Diff

kinematic time series (time series of X and Z coordinates). Table 1

displays the classification results obtained from using the High

Diff vs. Low Diff kinematic times series. The results show that the

classification accuracy and hence separation between the High Diff

kinematic time series is higher compared to those for the Low Diff

kinematic time series. This difference in separation was confirmed

using the Support Vector Machine (SVM) and Learning Vector

Quantization (LVQ) algorithms for classification. The difference in

TABLE 1 Comparison of classification accuracies using the High Di�

versus Low Di� kinematic time series.

Classifier LDA SVM LVQ

High Diff Vector 100 100 100

Low Diff Vector 76.7 81.19 74

All values in the table are mean percentages.

accuracy for these two kinematic series was found to be significant

using all three Machine Learning algorithms (p < 0.01, χ2 test)

(Table 1).

This answer of which kinematic variable was most altered,

was obviously correct as the only axis of movement was upwards

and downwards. We only used it as an example and proof that

examining LDAdiff was able to reveal the most saliently altered

variable in the time series.

3.2. Muscular alterations for pointing in
di�erent directions

Once we had tested our method of feature selection on the

simpler kinematic case described above, we embarked on the

more complex example of EMG activities for pointing in different

directions. The directions tested were 180◦, 135◦, 45◦, and 0◦. In

each case, we conducted a binary classification in order to see

which muscle combinations were significantly altered with respects

to pointing horizontally at 90◦, the gravity neutral direction.

The organization of the input vectors and the sampling methods

used for the classification are described in the Methods section

above. The classification accuracies obtained using LDA can be

seen in Figure 3A. Following the classification, we once again

computed the LDAdiff to obtain an idea of the muscle combination

which had contributed significantly to the classification and the

moments at which they did so. Unlike the case with the kinematic

features where one feature stood out in a very prominent manner,

the situation was more complex in the case of the EMGs. In

Figure 5 we can see the difference vectors obtained from subtracting

the representations for each binary classification. In the case of

Figures 5A, B, for downward pointing, it can be seen that the

muscles that contributed the most to the difference vectors are the

deltoid muscles and the trapezius. The LDAdiff vector predicting

pointing at 0◦ however (Figure 5D), would seem to indicate the

involvement of a different muscle combination which had been

modified with respects to pointing at 90◦. This combination was

more distributed, involving the Anterior and Medial deltoids, the

Pectoralis major, Latissimus dorsi, Trapezius and Biceps brachii.

The next step taken was to apply the recurrent method

described above to test if the combination of muscles with

contributions from the High Diff vectors gave better classification

results than those contributing from the Low Diff vectors. Table 2

displays the results of this test. The LDA classification with theHigh

Diff muscles systematically gave better results than the Low Diff

muscles for the binary classifications of pointing at 90◦ vs. 180◦,

135◦, 45◦, and 0◦ (Table 2, p < 0.01, χ2 test).
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FIGURE 5

Di�erence vectors LDAdi� obtained from the binary classification of input muscle vectors pointing horizontally vs. at (A) 180◦ (B) 135◦ (C) 45◦ (D) 0◦.

TABLE 2 Comparison of classification accuracies using the EMGs from

the High Di� versus Low Di� muscles.

LDA

180◦/90◦ 135◦/90◦ 45◦/90◦ 0◦/90◦

High Diff muscles 97 87.33 87.26 99.22

Low Diff muscles 79.89 60.81 58.44 58.18

SVM

180◦/90◦ 135◦/90◦ 45◦/90◦ 0◦/90◦

High Diff muscles 100 93.11 91.96 98

Low Diff muscles 78.7 66.89 72.63 78.7

LVQ

180◦/90◦ 135◦/90◦ 45◦/90◦ 0◦/90◦

High Diff muscles 97.5 87 87.32 99.64

Low Diff muscles 78.99 60.84 58.41 58.23

All values in the table are mean percentages.

Next we tested whether the information obtained concerning

the important components of the input vector from the model

comparison with LDA, would hold for another classification

technique. For this, we now compared classification accuracies

between the High Diff and Low Diff muscles using the Support

Vector Machine (SVM) and Learning Vector Quantization (LVQ)

algorithm. Once again, as in the case of LDA, classification

accuracies were significantly higher using the High Diff

muscles indicating that this combination of muscles were

more significantly altered for pointing in different directions (p <

0.01, χ2 test).

In Table 3 we have listed the High Diff and Low Diff

muscles for pointing in various directions. They show that in

all cases, the shoulder deltoid muscles were tuned to directional

constraints. However, in comparison to the anterior and medial

deltoid, the posterior deltoid did not play an important role

in tuning toward the upward angles of 45◦ and 0◦. Like the

anterior and medial deltoid muscle, the trapezius muscle was

important for modifications in all directions. In comparison

to the other three angles, many more muscles were involved

in the High Diff category for upward movement at 0◦. Two

additional trunk muscles, the latissimus dorsi and the pectoralis

major played a more important role in this adjustment. For this

direction, we also observed a bigger role for the biceps brachii.

It has to be emphasized again that the lack of importance in

classification does not indicate that a muscle is not activated during

pointing. Instead it shows that there the activation difference

between a muscle for the two angles being examined is not

very marked.
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TABLE 3 Muscles identified as High Di� or Low Di� muscles for each

pointing angle.

High Di� and Low Di� muscles for pointing direction.

Binary
classification

High Di� muscles Low Di� muscles

180◦ vs. 90◦ Anterior, Medial and

Posterior Deltoids,

Trapezius

Pectoralis major,

Latissimus dorsi, Biceps

Brachi, Triceps short and

long

135◦ vs. 90◦ Anterior, Medial and

Posterior Deltoids,

Trapezius

Pectoralis major,

Latissimus dorsi, Biceps

Brachi, Triceps short and

long

45◦ vs. 90◦ Anterior Deltoid, Medial

Deltoid, Trapezius

Posterior Deltoid,

Pectoralis major,

Latissimus dorsi, Biceps

Brachi, Triceps short and

long

0◦ vs. 90◦ Anterior Deltoid, Medial

Deltoid, Trapezius,

Pectoralis Major,

Latissimus Dorsi, Biceps

Brachi

Posterior Deltoid, Triceps

Long and Short

3.3. The LDA distance—a composite index
of data separation

Classification accuracies provide a measure of data separability.

High classification accuracies indicate that the data is highly

separable and that the intra class variability is sufficiently low.

On the other hand, once a certain amount of separability is

present, classification accuracies would continue being high with

a ceiling effect. One solution to this problem is to analyze the

LDAdistance in addition to classification accuracy. In Figure 3A,

the classification accuracies at 180◦ and 0◦ were not found to

be significantly different (p > 0.05, χ2). This is not surprising

as both accuracy values were similarly close to 100% (Table 2).

Further information concerning data separation was obtained

using the LDAdistance variable. Figure 3B displays the mean values

of the LDAdistance obtained from the binary classifications of the

EMGs from pointing at 90◦ vs. 180◦, 135◦, 45◦, and 0◦. While

the classifications accuracies are similar for downward (180◦) and

upward (0◦) pointing directions (Figure 3A), the LDAdistance values

show that when compared to pointing in the gravity free horizontal

dimension, EMG adjustments with respects to horizontal pointing

were greater when pointing downwards at 180 degrees than when

pointing upwards at 0 degrees (p < 0.05, Friedmann, followed by

Wilcoxon planned comparison).

3.4. The LDAdi� vector and temporal
features

Rather than using concise representations of muscle EMGs

such as the means or the maximum amplitude, we chose to keep

the entire time series of EMG activity. This was so that the LDA

difference vector LDAdiff would provide us with an understanding

of the aspects of EMG activity which were altered not only in terms

of amplitude but also in time. An inspection of LDAdiff for all

the cases of binary classifications performed in the study showed

that the biggest values of LDAdiff occurred in the first half of the

movement. Once again, to test the idea that LDAdiff provides an

index of feature importance, we took one muscle, the anterior

deltoid, and compared classification accuracies for all the binary

classifications with the first half of LDAdiff (First Half temporal

vector) compared to the second half (Second Half temporal vector).

The results of these classifications can be seen in Figure 6. Themean

classification accuracies for all pointing directions were found to

be greater in the first half of pointing. These differences however

were not found to be significant when pointing in the downward

directions (135◦ and 180◦). The story however was different when

pointing in the upward direction (45◦ and 0◦), hence indicating that

the most discriminable adjustments for pointing in these directions

was at the start of pointing rather than in the latter half (p < 0.01,

χ2 and Bonferroni correction).

4. Discussion

In this study, we have investigated the use of Machine Learning

as an analytical tool which is appropriate for investigating the

big amounts of data gathered in motor studies. Whether it

be with experimental equipment in labs or phone applications

which accompany people in their daily activities, advances in data

collection have led to the creation of vast banks of information. The

collection of this data is in keeping with a willingness to abandon

an approach in which investigation is only carried out on a narrow

set of pre-decided variables. This then opens up a new problem—

among the big set of collected variables, which ones are important

to the task at hand? We propose here, the use of Machine Learning

classification and feature selection as a means of identifying this

subset. In the sections below, we will start out by explaining how

the focus of this paper is fundamentally different from many

previous papers combining EMGs andMachine Learning where the

emphasis was on application. We will go on to explain our choice

of LDA as a Machine Learning algorithm. We will further discuss

our choice of feature selection methods and compare it to previous

techniques and finally, we will discuss the results from the project in

the context of our current understanding ofmuscular contributions

to pointing.

When it comes to motor activity, the primary use of Machine

Learning has been in the field of engineering, many of these for

the control of prosthetic limbs or for improvements in patient

identification. So for example, Côté-Allard et al. (2019) reported

on how deep learning could be succesfuly used to recognize hand

gestures. On a more challenging level, Parajuli et al. (2019) wrote

a review in which they described several studies that used Machine

Learning to control hand prostheses in real time. Still within the

framework of application, several articles on methodological issues

with respects to the use of EMGs in Machine learning applications

have been written by Phinyomark and Scheme (2018) as well as by

Xiong et al. (2021). Just as in the case of upper limb prosthetics,

the use of Machine Learning with EMG signals from lower limbs

have contributed to the control of prosthetics. This was described

in a review article by Labarrière et al. (2021). A clinical study on

how patients with arthritis could be identified through the use
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FIGURE 6

Classification accuracies obtained from the anterior deltoid EMG vector during the first and second half of the pointing movement. The figure shows

that mean accuracies were higher in the first part of pointing. However, only the di�erences at 45◦ and 0◦ classifications were found to be significant

(p < 0.01,χ2 and bonferroni correction). Values displayed are mean ± standard error of the mean. Significant results are indicated with an asterisk,

while NS indicates non-significant results.

of lower limb EMGs and Machine Learning has been described

by Nair et al. (2010). Cheron et al. (2003) described how lower

limb kinematics could be mapped from lower limb EMGs using a

recurrent neural network.

While the use of feature combinations inMachine Learning has

proved to be useful in engineering applications, the approach can

also be a way to tackle big data sets in basic research. By elucidating

which features are important to discriminating task conditions, the

technique can be used to identify the EMG or kinematic features

which are the most altered between conditions. To our knowledge

there has not been much research on the use of this approach in

motor control. Some exceptions to this are studies by Tolambiya

et al. (2011) where the SVM was used to analyze EMGs during

Whole Body Pointing. The study showed that the combination of

postural rather than focal muscles provided a better prediction

of pointing constraints, hence demonstrating that postural, rather

than focal muscles, underwent greater modifications for several

different variants of the Whole Body Pointing task. Using the

same approach, Tolambiya et al. (2012) showed in the anticipatory

phase, that the combination of flexor rather than extensor muscles

provided a higher than chance prediction between which of 4

different types of Whole Body Pointing tasks was about to be

executed. This is indicative of differences in motor planning before

the start of movement. In gait, Laroche et al. (2014) showed that the

thigh sagittal angle was able to provide a discrimination of patients

with hip osteoarthritis vs. control subjects as high as that of the

combination of all other kinematic angles, hence indicating a high

degree of modification in this angle for patients. These studies were

able to exploit Machine Learning in the service of understanding

how muscle and joint combinations contribute to motor control,

hence presenting a departure from univariate studies. Nevertheless,

the aforementioned studies on Machine Learning and EMGs are

different from the current study in two important aspects. Firstly,

the data combinations to be tested were decided upon a priori

as opposed to this study in which the importance of variable

combinations emerged from the feature selection that was done

after (a posteriori) Machine Learning. Secondly, since classification

in the previous studies was done with pre-selected groups, an

ensemble view that allowed us to obtain an idea of the relative

contributions of each muscle and phase with respects to the entire

dataset as in Figure 3 was not obtained.

In this study we put an emphasis on the use of LDA as a

classification algorithm. Several previous studies, including some

of our own, have shown that other methods such as the kernel

methods which include SVMs or random forest are more efficient

classifiers (Díaz-Uriarte and Alvarez de Andrés, 2006; Statnikov

et al., 2008; Nair et al., 2010; Heung et al., 2016; Han et al.,

2017; Uddin et al., 2019; Chen et al., 2020). Another example

more pertinent to motor control is a study by Aeles et al. (2020)

in which they used the SVM to uniquely distinguish between

78 individuals using their EMG signatures (Aeles et al., 2020).

Indeed Tables 1, 2 of this study show that the SVM provides better

classification. However such efficient classificationwould yield poor

information regarding the proximity of EMG data for pointing

in different directions as the SVM is capable of exploiting very

small differences to yield high classification i.e. we would face a

ceiling effect. Our choice was therefore to move ahead with LDA

with which classification accuracy would providemore information

concerning data overlap and because of the ease with whichwewere

able to perform feature selection. This is also more in keeping with

the spirit of explainable artificial intelligence (XAI) (Murdoch et al.,

2019; Arrieta et al., 2020). Although it goes under the guise of this

new name, XAI, the attempt to give a priority to understanding

the factors which permitted the black box of artificial intelligence

to achieve its classification and hence obtain an understanding of

underlying mechanisms is not new (Chan et al., 2002; Nair et al.,

2010; Tolambiya et al., 2011, 2012). It should be pointed out that

even a classification of 80% yields a statistical significance of p <

0.01 (χ2 test). The LDA algorithm, being a method which relies on

the creation of multivariate Gaussians models of each class, allows

for the subtraction of representations and a quick visualization

of the role of each feature in discrimination. This difference also

provides a means of quantifying the distance between classes. As

opposed to this, the SVM and Random Forest are methods that
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rely on a more distributed representation whereby this technique

of representation subtraction cannot be used so readily. We have

cited here several studies in which methods which are based on

decision trees like Random Forest, achieve a superior performance.

Once again, this method is not ideal when we are dealing with long

time series (the concatenated EMGs) from which we do not wish to

pick out particular features a priori.

While we were able to apply LDA to this problem of

motor control with healthy subject in a repeated measures

or paired protocol (same subjects pointing at all angles), it

should be noted that not all data sets would be so linearly

discriminable. This might especially be the case for studies

with independent groups like patients and controls. Patient data

also tends to have high variability. In such cases, if we are

to follow the logic of post-classification feature selection, the

characteristics of the separating surface can be used to select the

most discriminating features (Guyon et al., 2002; Weston et al.,

2003).

LDA has been used for feature selection using all three

paradigms described in the Introduction section. An example of

the filter method was an investigation by Lei et al. (2012) where the

Fisher criterion was used to select the most discriminative features

before application of LDA for face discrimination. An example

of the wrapper method applied with LDA can be seen in the

study by Gayathri and Sumathi (2016) where feature combinations

were assembled a priori and then tested with LDA. We did not

apply either of these techniques as they were not in keeping with

our wish to have a method in which the importance of feature

combinations is derived from the classification algorithm itself.

A successful classification indicates the presence of important

discriminating features and finding these features yields the

required variable combination

The muscles playing important roles in tuning for different

pointing directions are listed in Table 3. They are all the deltoid

muscles in the downward directions, along with the trapezius

muscle. In the upward direction, the posterior deltoid no longer

plays a key role, while two additional trunk muscles, the pectoralis

major and latissimus dorsi contribute to pointing at 0◦, compared

to 90◦. This is in keeping with previous studies which have

shown these muscles to have different activities as a function of

pointing directions (Flanders, 1991; Flanders et al., 1996, 196;

Mira et al., 2021). The novelty in the current study is that we

have used Machine Learning to pick out the muscles among the

collection of recorded muscles which are most pertinent to altering

pointing directions and highlighted when these changes occur. This

is not a trivial consideration as this would increase the ease of

visualization and model construction especially for more complex

movements. This would then improve the characterization of

movements in healthy subjects and hence draw attention to

compensatory movement patterns that might indicate early onset

of neuromuscular deficiencies. Another novel aspect of the current

study was the introduction of the LDAdistance variable that provided

a means of understanding certain global characteristics of EMG

alterations for pointing directions. For example, overall EMG

adjustments for pointing in the upward direction were lower than

those for the downward direction when compared to horizontal

pointing. The higher LDAdistance at 180
◦ in Figure 3B demonstrates

this. This may be due to the fact that, although horizontal and

upward movements follow a classical tri-phasic burst organization

(Hallett et al., 1975; Virji-Babul et al., 1994), downward movements

do not do so (Gaveau et al., 2021). Gaveau et al. (2021) have

provided several arguments to show that this is perhaps because

gravity replaces the agonist burst to accelerate the arm downwards,

thereby saving muscle effort. Downward movements therefore

exhibit activation patterns that strongly deviate from the classical

tri-phasic burst pattern (Gaveau et al., 2021; Poirier et al., 2022a).

Thus, the temporal organizations of upward and horizontal

movements are more similar to each other than are those of

downward and horizontal movements.

Concerning the roles of the individual muscles as seen in

Table 3, the importance of the deltoid muscles in classification

would be due to their role in setting the direction for the different

angles of pointing. It is striking that the posterior deltoid while

playing a key role in tuning for downward pointing is less important

in tuning for upward pointing. During the acceleration part

of upward and horizontal (rightwards) movements, substantial

activity of the posterior deltoid muscle is needed to respectively

stabilize the joint and accelerate the arm (Gaveau et al., 2021).

During downward movements, however, this muscle remains

largely silent. Again, the fact that the effort from the posterior

deltoid is replaced by gravity torque, during a downward

movement, makes the pattern of this muscle very different from its

activation during a horizontal one. Regarding why the latissimus

dorsi is useful in classifying upward but not downward movements

compared to horizontal ones, we may say that it may be due to

the fact that this muscle is engaged in stabilizing the shoulder

joint and decelerating the arm when moving upwards. On the

contrary, this muscle is less if any activated during downward (its

effort is replaced by gravity torque) and horizontal movements

(it is perpendicular to the plane of motion). The relatively low

prominence of muscles such as the biceps and triceps acting around

the elbow joint might be due to the protocol of the experiment

in which elbow rotation was discouraged. This is in contrast to

the experiments conducted by the Flanders group (Flanders, 1991;

Flanders and Herrmann, 1992; Buneo et al., 1994, 2008; Flanders

et al., 1996) where a pointing protocol with elbow rotations was

involved. The important role played by the trapezius muscle for

modulation in both directions is in agreement with reports by other

groups that along with the anterior deltoid, it plays an important

role in shoulder orientation for pointing direction (Sabatini, 2002;

Tokuda et al., 2016). It should be noted that none of the differences

in contribution to classification here is due to differences in EMG

amplitude as this variable is normalized (see Methods).

The EMGs in this study were classified without picking any

particular properties of the EMG. Only the classic pre-processing

of rectification, smoothing and filtering to remove noise was

applied. There are of course several techniques from signal analysis

which could be used to extract particular time and frequency

dependant characteristics of the signal. Such methods are for

example, Fourier transforms or wavelet analyses. Many engineers

have applied wavelet analyses to the analyses of EMG patterns, once

again with the primary goal of successfully discriminating between

movements types or populations (Phinyomark et al., 2011; Sharma

and Veer, 2016; Koenig et al., 2018). Future studies could involve
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the use of such techniques, more with the goal of understanding

the underlyingmechanisms ofmovement. In such studies we would

aim to trace how specific EMG properties are shifted as a function

of arm pointing direction. While there may not be any big changes

in the types of frequencies involved in the contraction involved,

the wavelet technique with its extraction of information concerning

when particular frequencies come into play, holdsmore promise for

revealing changes in muscle activity with direction.

In conclusion we will say that in the era of big data, Machine

Learning Classification with LDA appears to be a useful tool which

can complement currently available techniques like univariate

statistics and PCAs in the study of motor control. Univariate

statistics which are the most widely employed analytical tool in

motor control studies have been extremely useful in confirming

or rejecting pre-conceived notions on important variables. This

technique is less viable in the face of big volumes of data and

less open to the possibility of previously unexpected influences.

The use of ensemble techniques like PCA and non negative matrix

factorization, used to find synergies have been extremely useful in

tackling the problem of the number of degrees of freedom in the

motor system (d’Avella et al., 2010, 2011; Delis et al., 2018). They

have a completely different goal from the current paper. They aim

to construct a common framework from which to describe various

types of movement while the goal of the current project is to find

differences. It should also be pointed out that the two methods

are not incompatible. Once synergies are constructed, Machine

Learning classification can then be used to assign classes based on

the synergies.
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