303 research outputs found

    Dynamics of bootstrap percolation

    Full text link
    Bootstrap percolation transition may be first order or second order, or it may have a mixed character where a first order drop in the order parameter is preceded by critical fluctuations. Recent studies have indicated that the mixed transition is characterized by power law avalanches, while the continuous transition is characterized by truncated avalanches in a related sequential bootstrap process. We explain this behavior on the basis of a through analytical and numerical study of the avalanche distributions on a Bethe lattice.Comment: Proceedings of the International Workshop and Conference on Statistical Physics Approaches to Multidisciplinary Problems, IIT Guwahati, India, 7-13 January 200

    Optimizing spread dynamics on graphs by message passing

    Full text link
    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the last decades, many efforts have been devoted to understand the typical behaviour of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception of models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem

    Facilitated spin models on Bethe lattice: bootstrap percolation, mode-coupling transition and glassy dynamics

    Full text link
    We show that facilitated spin models of cooperative dynamics introduced by Fredrickson and Andersen display on Bethe lattices a glassy behaviour similar to the one predicted by the mode-coupling theory of supercooled liquids and the dynamical theory of mean-field disordered systems. At low temperature such cooperative models show a two-step relaxation and their equilibration time diverges at a finite temperature according to a power-law. The geometric nature of the dynamical arrest corresponds to a bootstrap percolation process which leads to a phase space organization similar to the one of mean-field disordered systems. The relaxation dynamics after a subcritical quench exhibits aging and converges asymptotically to the threshold states that appear at the bootstrap percolation transition.Comment: 7 pages, 6 figures, minor changes, final version to appear in Europhys. Let

    Infinite-cluster geometry in central-force networks

    Full text link
    We show that the infinite percolating cluster (with density P_inf) of central-force networks is composed of: a fractal stress-bearing backbone (Pb) and; rigid but unstressed ``dangling ends'' which occupy a finite volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical Review Letter

    Hysteresis in the Random Field Ising Model and Bootstrap Percolation

    Get PDF
    We study hysteresis in the random-field Ising model with an asymmetric distribution of quenched fields, in the limit of low disorder in two and three dimensions. We relate the spin flip process to bootstrap percolation, and show that the characteristic length for self-averaging LL^* increases as exp(exp(J/Δ))exp(exp (J/\Delta)) in 2d, and as exp(exp(exp(J/Δ)))exp(exp(exp(J/\Delta))) in 3d, for disorder strength Δ\Delta much less than the exchange coupling J. For system size 1<<L<L1 << L < L^*, the coercive field hcoerh_{coer} varies as 2JΔlnlnL2J - \Delta \ln \ln L for the square lattice, and as 2JΔlnlnlnL2J - \Delta \ln \ln \ln L on the cubic lattice. Its limiting value is 0 for L tending to infinity, both for square and cubic lattices. For lattices with coordination number 3, the limiting magnetization shows no jump, and hcoerh_{coer} tends to J.Comment: 4 pages, 4 figure

    Dynamics of k-core percolation

    Full text link
    In many network applications nodes are stable provided they have at least k neighbors, and a network of k-stable nodes is called a k-core. The vulnerability to random attack is characterized by the size of culling avalanches which occur after a randomly chosen k-core node is removed. Simulations of lattices in two, three and four dimensions, as well as small world networks, indicate that power-law avalanches occur in first order k-core systems, while truncated avalanches are characteristic of second order cases.Comment: 4 pages, 3 figure

    Dynamics of k-core percolation in a random graph

    Full text link
    We study the edge deletion process of random graphs near a k-core percolation point. We find that the time-dependent number of edges in the process exhibits critically divergent fluctuations. We first show theoretically that the k-core percolation point is exactly given as the saddle-node bifurcation point in a dynamical system. We then determine all the exponents for the divergence based on a universal description of fluctuations near the saddle-node bifurcation.Comment: 16 pages, 4 figure

    On the study of jamming percolation

    Full text link
    We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing'' rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing'' requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing'' requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensional versions of the knights-like models.Comment: 13 pages, 18 figures; Spiral model does satisfy property

    Cooperative Behavior of Kinetically Constrained Lattice Gas Models of Glassy Dynamics

    Full text link
    Kinetically constrained lattice models of glasses introduced by Kob and Andersen (KA) are analyzed. It is proved that only two behaviors are possible on hypercubic lattices: either ergodicity at all densities or trivial non-ergodicity, depending on the constraint parameter and the dimensionality. But in the ergodic cases, the dynamics is shown to be intrinsically cooperative at high densities giving rise to glassy dynamics as observed in simulations. The cooperativity is characterized by two length scales whose behavior controls finite-size effects: these are essential for interpreting simulations. In contrast to hypercubic lattices, on Bethe lattices KA models undergo a dynamical (jamming) phase transition at a critical density: this is characterized by diverging time and length scales and a discontinuous jump in the long-time limit of the density autocorrelation function. By analyzing generalized Bethe lattices (with loops) that interpolate between hypercubic lattices and standard Bethe lattices, the crossover between the dynamical transition that exists on these lattices and its absence in the hypercubic lattice limit is explored. Contact with earlier results are made via analysis of the related Fredrickson-Andersen models, followed by brief discussions of universality, of other approaches to glass transitions, and of some issues relevant for experiments.Comment: 59 page
    corecore