3,609 research outputs found
Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap
We present a detailed theoretical analysis of micro-motion in a time-averaged
orbiting potential trap. Our treatment is based on the Gross-Pitaevskii
equation, with the full time dependent behaviour of the trap systematically
approximated to reduce the trapping potential to its dominant terms. We show
that within some well specified approximations, the dynamic trap has
solitary-wave solutions, and we identify a moving frame of reference which
provides the most natural description of the system. In that frame eigenstates
of the time-averaged orbiting potential trap can be found, all of which must be
solitary-wave solutions with identical, circular centre of mass motion in the
lab frame. The validity regime for our treatment is carefully defined, and is
shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure
Client self-assessment in community aged care: A comparative study involving older Australians and their case managers
Self-assessment of support needs is a relatively new and under-researched phenomenon in domiciliary aged care. This article outlines the results of a comparative study focusing on whether a self-assessment approach assists clients to identify support needs and the degree to which self-assessed needs differ from an assessment conducted by community care professionals. A total of 48 older people and their case managers completed a needs assessment tool. Twenty-two semi-structured interviews were used to ascertain older people’s views and preferences regarding the self-assessment process. The study suggests that while a co-assessment approach as outlined in this article has the potential to assist older people to gain a better understanding of their care needs as well as the assessment process and its ramifications, client self-assessment should be seen as part of a co-assessment process involving care professionals. Such a co-assessment process allows older people to gain a better understanding of their support needs and the wider community aged care context. The article suggests that a co-assessment process involving both clients and care professionals contains features that have the capacity to enhance domiciliary aged care
Nonlinear atom-optical delta-kicked harmonic oscillator using a Bose-Einstein condensate
We experimentally investigate the atom-optical delta-kicked harmonic
oscillator for the case of nonlinearity due to collisional interactions present
in a Bose-Einstein condensate. A Bose condensate of rubidium atoms tightly
confined in a static harmonic magnetic trap is exposed to a one-dimensional
optical standing-wave potential that is pulsed on periodically. We focus on the
quantum anti-resonance case for which the classical periodic behavior is simple
and well understood. We show that after a small number of kicks the dynamics is
dominated by dephasing of matter wave interference due to the finite width of
the condensate's initial momentum distribution. In addition, we demonstrate
that the nonlinear mean-field interaction in a typical harmonically confined
Bose condensate is not sufficient to give rise to chaotic behavior.Comment: 4 pages, 3 figure
Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice
Parkinson’s disease is a synucleinopathy that is characterized by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (α-Syn) aggregates. Evidence suggests that α-Syn aggregation can originate in peripheral tissues and progress to the brain via autonomic fibers. We tested this by inoculating the duodenal wall of mice with α-Syn preformed fibrils. Following inoculation, we observed gastrointestinal deficits and physiological changes to the enteric nervous system. Using the AAV-PHP.S capsid to target the lysosomal enzyme glucocerebrosidase for peripheral gene transfer, we found that α-Syn pathology is reduced due to the increased expression of this protein. Lastly, inoculation of α-Syn fibrils in aged mice, but not younger mice, resulted in progression of α-Syn histopathology to the midbrain and subsequent motor defects. Our results characterize peripheral synucleinopathy in prodromal Parkinson’s disease and explore cellular mechanisms for the gut-to-brain progression of α-Syn pathology
Bragg scattering of Cooper pairs in an ultra-cold Fermi gas
We present a theoretical treatment of Bragg scattering of a degenerate Fermi
gas in the weakly interacting BCS regime. Our numerical calculations predict
correlated scattering of Cooper pairs into a spherical shell in momentum space.
The scattered shell of correlated atoms is centered at half the usual Bragg
momentum transfer, and can be clearly distinguished from atoms scattered by the
usual single-particle Bragg mechanism. We develop an analytic model that
explains key features of the correlated-pair Bragg scattering, and determine
the dependence of this scattering on the initial pair correlations in the gas.Comment: Manuscript substantially revised. Version 2 contains a more detailed
discussion of the collisional interaction used in our theory, and is based on
three-dimensional solution
Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae
We have developed a quantitative, empirical method for estimating the age of
Type Ia supernovae (SNe Ia) from a single spectral epoch. The technique
examines the goodness of fit of spectral features as a function of the temporal
evolution of a large database of SNe Ia spectral features. When a SN Ia
spectrum with good signal-to-noise ratio over the rest frame range 3800 to 6800
A is available, the precision of a spectral feature age (SFA) is (1-sigma) ~
1.4 days. SFA estimates are made for two spectral epochs of SN 1996bj (z=0.574)
to measure the rate of aging at high redshift. In the 10.05 days which elapsed
between spectral observations, SN 1996bj aged 3.35 3.2 days, consistent
with the 6.38 days of aging expected in an expanding Universe and inconsistent
with no time dilation at the 96.4 % confidence level. The precision to which
individual features constrain the supernova age has implications for the source
of inhomogeneities among SNe Ia.Comment: 14 pages (LaTex), 7 postscript figures to Appear in the Astronomical
Journa
Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign
The self-consistent core-pedestal prediction model of a combination of EPED1 type pedestal prediction and a simple stiff core transport model is able to predict Type I ELMy (edge localized mode) pedestals of a large JET-ILW (ITER-like wall) database at the similar accuracy as is obtained when the experimental global plasma beta is used as input. The neutral penetration model [R. J. Groebner et al., Phys. Plasmas 9, 2134 (2002)] with corrections that take into account variations due to gas fueling and plasma triangularity is able to predict the pedestal density with an average error of 15%. The prediction of the pedestal pressure in hydrogen plasma that has higher core heat diffusivity compared to a deuterium plasma with similar heating and fueling agrees with the experiment when the isotope effect on the stability, the increased diffusivity, and outward radial shift of the pedestal are included in the prediction. However, the neutral penetration model that successfully predicts the deuterium pedestal densities fails to predict the isotope effect on the pedestal density in hydrogen plasmas
- …
