133 research outputs found
Soft tissue motion influences skeletal loads during impacts
Soft tissue motion occurs as impulsive loads are applied to the skeletal system. It has been
demonstrated that the wave like motion of these wobbling masses can reduce the loads acting on the
musculoskeletal system. This is an important concept to consider, whether the loads acting on the
musculoskeletal system are being determined using either inverse or direct dynamics
The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings
The aim of this study was to determine the effects that soft tissue motion has on ground reaction forces, joint torques and joint reaction forces in drop landings. To this end a four body-segment wobbling mass model was developed to reproduce the vertical ground reaction force curve for the first 100 ms of landing. Particular attention was paid to the passive impact phase, while selecting most model parameters a priori, thus permitting examination of the rigid body assumption on system kinetics. A two-dimensional wobbling mass model was developed in DADS (version 9.00, CADSI) to simulate landing from a drop of 43 cm. Subject specific inertia parameters were calculated for both the rigid links and the wobbling masses. The magnitude and frequency response of the soft tissue of the subject to impulsive loading was measured and used as a criterion for assessing the wobbling mass motion. The model successfully reproduced the vertical ground reaction force for the first 100 ms of the landing with a peak vertical ground reaction force error of 1.2 % and root mean square errors of 5% for the first 15 ms and 12% for the first 40 ms. The resultant joint forces and torques were lower for the wobbling mass model compared with a rigid body model, up to nearly 50% lower, indicating the important contribution of the wobbling masses on reducing system loading
Wobbling mass influence on impact ground reaction forces: A simulation model sensitivity analysis
To gain insight into joint loadings during impacts, wobbling mass models have been used. The
aim of this study was to investigate the sensitivity of a wobbling mass model, of landing from a
drop, to the model's parameters. A two-dimensional wobbling mass model was developed. Three
rigid linked segments designed to represent the skeleton each had a second mass attached to them,
via two translational non-linear spring dampers, representing the soft tissue. Model parameters
were systematically varied one at a time and the effect this had on the peak vertical ground
reaction force and segment kinematics was examined. Model output showed low sensitivity to
most model parameters but was sensitive to the timing of joint torque initiation. Varying the heel
pad stiffness in the range of stiffness values reported in the literature had the largest influence on
the peak vertical ground reaction force. The analysis indicated that the more proximal body
segments had a lower influence on peak vertical ground reaction force per unit mass than the
segments nearer the contact point, 340 N/kg, 157 N/kg and 24 N/kg for the shank, thigh and trunk
respectively. Model simulations were relatively insensitive to variations in the properties of the
connection between the wobbling masses and the skeleton. Given the proviso that estimates for
the other model parameters and joint torque activation timings lie in a realistic range, then if the
goal is to examine the effects of the wobbling mass on the system this insensitivity is an
advantage. If precise knowledge about the motion of the wobbling mass is of interest, however,
more experimental work is required to determine precisely these model parameters
The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox
The aim of this study was to test the hypothesis that by accounting for soft tissue motion of the lower leg during the impacts associated with in vivo testing, that the differences between in vivo and in vitro estimates of heel pad properties can be explained. To examine this a two-dimensional model of the shank and heel pad was developed using DADS. The model contained a heel pad element and a rigid skeleton to which was connected soft tissue which could move relative to the bone. Simulations permitted estimation of heel pad properties directly from heel pad deformations, and from the kinematics of an impacting pendulum. These two approaches paralleled those used in vitro and in vivo respectively. Measurements from the pendulum indicated that heel pad properties changed from those found in vitro to those found in vivo as relative motion of the bone and soft tissue was allowed. This would indicate that pendulum measures of the in vivo heel pad properties are also measuring the properties of the whole lower leg. The ability of the wobbling mass of the shank to dissipate energy during an impact was found to be significant. These results demonstrate the important role of both the heel pad and soft tissue of the shank to the dissipation of mechanical energy during impacts. These results provide a further clarification of the paradox between the measurements of heel pad properties made in vivo and in vitro
Kill and cure: genomic phylogeny and bioactivity of Burkholderia gladioli bacteria capable of pathogenic and beneficial lifestyles.
Burkholderia gladioli is a bacterium with a broad ecology spanning disease in humans, animals and plants, but also encompassing multiple beneficial interactions. It is a plant pathogen, a toxin-producing food-poisoning agent, and causes lung infections in people with cystic fibrosis (CF). Contrasting beneficial traits include antifungal production exploited by insects to protect their eggs, plant protective abilities and antibiotic biosynthesis. We explored the genomic diversity and specialized metabolic potential of 206 B. gladioli strains, phylogenomically defining 5 clades. Historical disease pathovars (pv.) B. gladioli pv. allicola and B. gladioli pv. cocovenenans were distinct, while B. gladioli pv. gladioli and B. gladioli pv. agaricicola were indistinguishable; soft-rot disease and CF infection were conserved across all pathovars. Biosynthetic gene clusters (BGCs) for toxoflavin, caryoynencin and enacyloxin were dispersed across B. gladioli, but bongkrekic acid and gladiolin production were clade-specific. Strikingly, 13 % of CF infection strains characterized were bongkrekic acid-positive, uniquely linking this food-poisoning toxin to this aspect of B. gladioli disease. Mapping the population biology and metabolite production of B. gladioli has shed light on its diverse ecology, and by demonstrating that the antibiotic trimethoprim suppresses bongkrekic acid production, a potential therapeutic strategy to minimize poisoning risk in CF has been identified
Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria.
Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B. ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B. ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B. ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia cepacia complex bacteria. Removal of the third replicon reduced B. ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.A.J.M. is funded by a Biotechnology and Biological Sciences Research Council (BBSRC) South West doctoral training partnership award (BY1910 7007). E.M., G.L.C., T.R.C. and J.P. acknowledge additional support for genome mining from BBSRC award BB/L021692/1; C.J. and M.J. were funded by this award. M.J. is currently the recipient of a BBSRC Future Leader Fellowship (BB/R01212/1). The Bruker maXis II UHPLC-ESI-Q-TOF-MS system used in this research was funded by the BBSRC (BB/M017982/1). G.W. was supported by awards to E.M. from the Life Sciences Bridging Fund and Wellcome Trust Institutional Strategic Support Fund held at Cardiff University. T.R.C. and M.J.B. acknowledge funding support from the Medical Research Council’s Cloud Infrastructure for Microbial Bioinformatics (MR/L015080/1), which provided the computational resources to undertake the analyses for this work. D.R.N. and A.E.G. acknowledge funding from a Wellcome Trust and Royal Society Sir Henry Dale Fellowship awarded to D.R.N. (grant number 204457/Z/16/Z). G.L.C. is the recipient of a Wolfson Research Merit Award from the Royal Society (WM130033)
Genomic Assemblies of Members of Burkholderia and Related Genera as a Resource for Natural Product Discovery.
The genomes of 450 members of Burkholderiaceae, isolated from clinical and environmental sources, were sequenced and assembled as a resource for genome mining. Genomic analysis of the collection has enabled the identification of multiple metabolites and their biosynthetic gene clusters, including the antibiotics gladiolin, icosalide A, enacyloxin, and cepacin A
Antibiotic skeletal diversification via differential enoylreductase recruitment and module iteration in trans -acyltransferase polyketide synthases
Microorganisms are remarkable chemists capable of assembling complex molecular architectures that penetrate cells and bind biomolecular targets with exquisite selectivity. Consequently, microbial natural products have wide-ranging applications in medicine and agriculture. How the “blind watchmaker” of evolution creates skeletal diversity is a key question in natural products research. Comparative analysis of biosynthetic pathways to structurally related metabolites is an insightful approach to addressing this. Here, we report comparative biosynthetic investigations of gladiolin, a polyketide antibiotic from Burkholderia gladioli with promising activity against multidrug-resistant Mycobacterium tuberculosis, and etnangien, a structurally related antibiotic produced by Sorangium cellulosum. Although these metabolites have very similar macrolide cores, their C21 side chains differ significantly in both length and degree of saturation. Surprisingly, the trans-acyltransferase polyketide synthases (PKSs) that assemble these antibiotics are almost identical, raising intriguing questions about mechanisms underlying structural diversification in this important class of biosynthetic assembly line. In vitro reconstitution of key biosynthetic transformations using simplified substrate analogues, combined with gene deletion and complementation experiments, enabled us to elucidate the origin of all the structural differences in the C21 side chains of gladiolin and etnangien. The more saturated gladiolin side chain arises from a cis-acting enoylreductase (ER) domain in module 1 and in trans recruitment of a standalone ER to module 5 of the PKS. Remarkably, module 5 of the gladiolin PKS is intrinsically iterative in the absence of the standalone ER, accounting for the longer side chain in etnangien. These findings have important implications for biosynthetic engineering approaches to the creation of novel polyketide skeletons
Discovery and Biosynthesis of Gladiolin: A Burkholderia gladioli Antibiotic with Promising Activity against Mycobacterium tuberculosis.
An antimicrobial activity screen of Burkholderia gladioli BCC0238, a clinical isolate from a cystic fibrosis patient, led to the discovery of gladiolin, a novel macrolide antibiotic with potent activity against Mycobacterium tuberculosis H37Rv. Gladiolin is structurally related to etnangien, a highly unstable antibiotic from Sorangium cellulosum that is also active against Mycobacteria. Like etnangien, gladiolin was found to inhibit RNA polymerase, a validated drug target in M. tuberculosis. However, gladiolin lacks the highly labile hexaene moiety of etnangien and was thus found to possess significantly increased chemical stability. Moreover, gladiolin displayed low mammalian cytotoxicity and good activity against several M. tuberculosis clinical isolates, including four that are resistant to isoniazid and one that is resistant to both isoniazid and rifampicin. Overall, these data suggest that gladiolin may represent a useful starting point for the development of novel drugs to tackle multidrug-resistant tuberculosis. The B. gladioli BCC0238 genome was sequenced using Single Molecule Real Time (SMRT) technology. This resulted in four contiguous sequences: two large circular chromosomes and two smaller putative plasmids. Analysis of the chromosome sequences identified 49 putative specialized metabolite biosynthetic gene clusters. One such gene cluster, located on the smaller of the two chromosomes, encodes a trans-acyltransferase (trans-AT) polyketide synthase (PKS) multienzyme that was hypothesized to assemble gladiolin. Insertional inactivation of a gene in this cluster encoding one of the PKS subunits abrogated gladiolin production, confirming that the gene cluster is responsible for biosynthesis of the antibiotic. Comparison of the PKSs responsible for the assembly of gladiolin and etnangien showed that they possess a remarkably similar architecture, obfuscating the biosynthetic mechanisms responsible for most of the structural differences between the two metabolites
- …