4 research outputs found

    Essential Oil of <i>Lavandula officinalis</i>: Chemical Composition and Antibacterial Activities

    No full text
    The purpose of this study was to determine the chemical composition of the essential oil of Lavandula officinalis from Morocco using the GC-MS technique and assess the antibacterial effects against seven pathogenic bacteria strains isolated from the food origins of Salmonella infantis, Salmonella kentucky, Salmonella newport, three serotypes of Escherichia coli (O114H8K11, O127K88ac, O127H40K11) and Klebsiella. Tests of sensitivity were carried out on a solid surface using the Disc Diffusion Method. Results showed that E. coli and S.newport were sensitive to Lavandula officinalis essential oil. Minimum inhibitory concentrations (MIC) were determined using the method of agar dilution. The antibacterial results showed that four strains (three serotypes of E. coli, and S. newport) were remarkedly sensitive to Lavandula officinalis essential oil, giving MIC values of 88.7 µg/mL and 177.5 µg/mL. The molecular docking of the main oil products with the E. coli target protein 1VLY, showed that eucalyptol and linalyl acetate bind efficiently with the active site of the target protein. In particular, eucalyptol showed a higher activity than gentamicin used as positive control with a binding energy of −5.72 kcal/mol and −5.55 kcal/mol, respectively

    Rosemary as a Potential Source of Natural Antioxidants and Anticancer Agents: A Molecular Docking Study

    Get PDF
    Rosmarinus officinalis L. compounds, especially its main polyphenolic compounds, carnosic acid (CA) and rosmarinic acid (RA), influence various facets of cancer biology, making them valuable assets in the ongoing fight against cancer. These two secondary metabolites exhibit formidable antioxidant properties that are a pivotal contributor against the development of cancer. Their antitumor effect has been related to diverse mechanisms. In the case of CA, it has the capacity to induce cell death of cancer cells through the rise in ROS levels within the cells, the inhibition of protein kinase AKT, the activation of autophagy-related genes (ATG) and the disrupt mitochondrial membrane potential. Regarding RA, its antitumor actions encompass apoptosis induction through caspase activation, the inhibition of cell proliferation by interrupting cell cycle progression and epigenetic regulation, antioxidative stress-induced DNA damage, and interference with angiogenesis to curtail tumor growth. To understand the molecular interaction between rosemary compounds (CA and RA) and a protein that is involved in cancer and inflammation, S100A8, we have performed a series of molecular docking analyses using the available three-dimensional structures (PDBID: 1IRJ, 1MR8, and 4GGF). The ligands showed different binding intensities in the active sites with the protein target molecules, except for CA with the 1MR8 protein
    corecore