107 research outputs found
Sequential Decision Making with Untrustworthy Service Providers
In this paper, we deal with the sequential decision making problem of agents operating in computational economies, where there is uncertainty regarding the trustworthiness of service providers populating the environment. Specifically, we propose a generic Bayesian trust model, and formulate the optimal Bayesian solution to the exploration-exploitation problem facing the agents when repeatedly interacting with others in such environments. We then present a computationally tractable Bayesian reinforcement learning algorithm to approximate that solution by taking into account the expected value of perfect information of an agent's actions. Our algorithm is shown to dramatically outperform all previous finalists of the international Agent Reputation and Trust (ART) competition, including the winner from both years the competition has been run
Influence of State-Variable Constraints on Partially Observable Monte Carlo Planning
Online planning methods for partially observable Markov decision processes (POMDPs) have re- cently gained much interest. In this paper, we pro- pose the introduction of prior knowledge in the form of (probabilistic) relationships among dis- crete state-variables, for online planning based on the well-known POMCP algorithm. In particu- lar, we propose the use of hard constraint net- works and probabilistic Markov random fields to formalize state-variable constraints and we extend the POMCP algorithm to take advantage of these constraints. Results on a case study based on Rock- sample show that the usage of this knowledge pro- vides significant improvements to the performance of the algorithm. The extent of this improvement depends on the amount of knowledge encoded in the constraints and reaches the 50% of the average discounted return in the most favorable cases that we analyzed
Exploring Quantum Neural Networks for the Discovery and Implementation of Quantum Error-Correcting Codes
We investigate the use of Quantum Neural Networks for discovering and
implementing quantum error-correcting codes. Our research showcases the
efficacy of Quantum Neural Networks through the successful implementation of
the Bit-Flip quantum error-correcting code using a Quantum Autoencoder,
effectively correcting bit-flip errors in arbitrary logical qubit states.
Additionally, we employ Quantum Neural Networks to restore states impacted by
Amplitude Damping by utilizing an approximative 4-qubit error-correcting
codeword. Our models required modification to the initially proposed Quantum
Neural Network structure to avoid barren plateaus of the cost function and
improve training time. Moreover, we propose a strategy that leverages Quantum
Neural Networks to discover new encryption protocols tailored for specific
quantum channels. This is exemplified by learning to generate logical qubits
explicitly for the bit-flip channel. Our modified Quantum Neural Networks
consistently outperformed the standard implementations across all tasks
Well-promising outcomes with vacuum-assisted closure in an infected wound following laparotomy: A case report
Introducation: Negative pressure wound therapy (NPWT) represents an alternative method to optimize conditions for wound healing. Delayed wound closure is a significant health problem, which is directly associated with pain and suffering from patient's aspect, as well with social and financial burden. Presentation of case: We report a case of vacuum-assisted wound therapy with hypertonic solution distillation and continuous negative pressure application, in an infected wound after laparotomy for incisional hernia reconstruction with mesh placement. Negative pressure was initiated at the wound margins after failure of conventional treatment with great outcomes, achieving a total closure of the incision within two weeks.
Discussion: Each wound has particular characteristics which must be managed. Vacuum assisted closure (VAC) with continuous negative pressure and simultaneous wound instillation and cleanse can provide optimum results, reducing the cavity volume, by newly produced granulated tissue.
Conclusion: The simultaneous use of instillation and constant pressure seemed to be superior in comparison with NPWT alone. Compared to conventional methods, the use of VAC ends to better outcomes, in cases of infected wounds following laparotomy
The Least-core and Nucleolus of Path Cooperative Games
Cooperative games provide an appropriate framework for fair and stable profit
distribution in multiagent systems. In this paper, we study the algorithmic
issues on path cooperative games that arise from the situations where some
commodity flows through a network. In these games, a coalition of edges or
vertices is successful if it enables a path from the source to the sink in the
network, and lose otherwise. Based on dual theory of linear programming and the
relationship with flow games, we provide the characterizations on the CS-core,
least-core and nucleolus of path cooperative games. Furthermore, we show that
the least-core and nucleolus are polynomially solvable for path cooperative
games defined on both directed and undirected network
An angel-daemon approach to assess the uncertainty in the power of a collectivity to act
The final publication is available at link.springer.comWe propose the use of the angel-daemon framework to assess the Coleman's power of a collectivity to act under uncertainty in weighted voting games.
In this framework uncertainty profiles describe the potential changes in the weights of a weighted game and fixes the spread of the weights' change. For each uncertainty profile a strategic angel-daemon game can be considered. This game has two selfish players, the angel and the daemon, the angel selects its action as to maximize the effect on the measure under consideration while daemon acts oppositely.
Players angel and daemon give a balance between the best and the worst. The angel-daemon games associated to the Coleman's power are zero-sum games and therefore the expected utilities of all the Nash equilibria
are the same. In this way we can asses the Coleman's power under uncertainty. Besides introducing the framework for this particular setting we analyse basic properties and make some computational complexity considerations. We provide several examples based in the evolution of the voting rules of the EU Council of Ministers.Peer ReviewedPostprint (author's final draft
Pattern and Outcome of Chest Injuries at Bugando Medical Centre in Northwestern Tanzania.
Chest injuries constitute a continuing challenge to the trauma or general surgeon practicing in developing countries. This study was conducted to outline the etiological spectrum, injury patterns and short term outcome of these injuries in our setting. This was a prospective study involving chest injury patients admitted to Bugando Medical Centre over a six-month period from November 2009 to April 2010 inclusive. A total of 150 chest injury patients were studied. Males outnumbered females by a ratio of 3.8:1. Their ages ranged from 1 to 80 years (mean = 32.17 years). The majority of patients (72.7%) sustained blunt injuries. Road traffic crush was the most common cause of injuries affecting 50.7% of patients. Chest wall wounds, hemothorax and rib fractures were the most common type of injuries accounting for 30.0%, 21.3% and 20.7% respectively. Associated injuries were noted in 56.0% of patients and head/neck (33.3%) and musculoskeletal regions (26.7%) were commonly affected. The majority of patients (55.3%) were treated successfully with non-operative approach. Underwater seal drainage was performed in 39 patients (19.3%). One patient (0.7%) underwent thoracotomy due to hemopericardium. Thirty nine patients (26.0%) had complications of which wound sepsis (14.7%) and complications of long bone fractures (12.0%) were the most common complications. The mean LOS was 13.17 days and mortality rate was 3.3%. Using multivariate logistic regression analysis, associated injuries, the type of injury, trauma scores (ISS, RTS and PTS) were found to be significant predictors of the LOS (P < 0.001), whereas mortality was significantly associated with pre-morbid illness, associated injuries, trauma scores (ISS, RTS and PTS), the need for ICU admission and the presence of complications (P < 0.001). Chest injuries resulting from RTCs remain a major public health problem in this part of Tanzania. Urgent preventive measures targeting at reducing the occurrence of RTCs is necessary to reduce the incidence of chest injuries in this region
The Complexity of Computing Minimal Unidirectional Covering Sets
Given a binary dominance relation on a set of alternatives, a common thread
in the social sciences is to identify subsets of alternatives that satisfy
certain notions of stability. Examples can be found in areas as diverse as
voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08]
proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal upward or downward covering set. For both problems, we raise
this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and
provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other
natural problems regarding minimal or minimum-size covering sets are hard or
complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of
our results is that neither minimal upward nor minimal downward covering sets
(even when guaranteed to exist) can be computed in polynomial time unless P=NP.
This sharply contrasts with Brandt and Fischer's result that minimal
bidirectional covering sets (i.e., sets that are both minimal upward and
minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
Mechanisms That Clear Mutations Drive Field Cancerization in Mammary Tissue
Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization
- …