28 research outputs found

    Thermal insulation of YSZ and erbia-doped yttria-stabilised zirconia EB-PVD thermal barrier coating systems after CMAS attack

    Get PDF
    The impact of small deposits of calcium–magnesium–aluminium silicates (CMAS) on the top of thermal barrier coatings (TBCs) made of yttria-stabilised zirconia (YSZ) produced via electron-beam physical vapour deposition (EB-PVD) is shown to play a role in the microstructural and chemical stability of the coatings; hence, it also affects the thermal insulation potential of TBCs. Therefore, the present work investigates the degradation potential of minor CMAS deposits (from 0.25 to 5 mg·cm−2) annealed at 1250 °C for 1 h on a novel Er2O3-Y2O3 co-stabilised ZrO2 (ErYSZ) EB-PVD TBC, which is compared to the standard YSZ coating. Due to the higher reactivity of ErYSZ coatings with CMAS, its penetration is limited in comparison with the standard YSZ coatings, hence resulting in a better thermal insulation of the former after ageing

    Estimation of thermal barrier coating fracture toughness using integrated computational materials engineering

    Get PDF
    The fracture toughness of thermal barrier coatings (TBC) is a critical mechanical property that governs damage resistance. Catastrophic delamination of TBC under erosion conditions occurs in TBC with low toughness. Prior research has explored indirect and complex experiments to measure TBC toughness, but the miniaturized nature of the multi-layered coating makes it difficult to quantify its intrinsic toughness. This paper integrates computational modeling and experimental approaches to estimate the TBC toughness and the substrate delamination strength. The results show that a typical newly fabricated yttrium stabilized zirconia coating under service conditions has a toughness estimated in the range of 0.1–0.5 MPa m1/2 and a toughness of thermally grown oxide layer in between 1.5 and 1.7 MPa m1/2. The analysis also determined that a thermally grown oxide with a fracture toughness above 2.0 MPa m1/2 would not delaminate under the service conditions. Overall, the approach demonstrates the value of integrated computational material approaches, which can save time and enhance predictive power

    Modelling evaporation in electron‑beam physical vapour deposition of thermal barrier coatings

    Get PDF
    This work presents computational models of ingot evaporation for electron-beam physical vapour deposition (EB-PVD) that can be applied to the deposition and development of thermal barrier coatings (TBCs). TBCs are insulating coatings that protect aero-engine components from high temperatures, which can be above the component’s melting point. The development of advanced TBCs is fuelled by the need to improve engine efficiency by increasing the engine operating temperature. Rare-earth zirconates (REZ) have been proposed as the next-generation TBCs due to their low coefficient of thermal conductivity and resistance to molten calcium-magnesium alumina-silicates (CMAS). However, the evaporation of REZ has proven to be challenging, with some coatings displaying compositional segregation across their thickness. The computational models form part of a larger analytical model that spans the whole EB-PVD process. The computational models focus on ingot evaporation, have been implemented in MATLAB and include data from 6 oxides: ZrO2, Y2O3, Gd2O3, Er2O3, La2O3 and Yb2O3. Two models (2D and 3D) successfully evaluate the evaporation rates of constituent oxides from multiple-REZ ingots, which can be used to highlight incompatibilities and preferential evaporation of some of these oxides. A third model (local composition activated, LCA) successfully predicts the evaporation rate of the whole ingot and replicates the cyclic change in composition of the evaporated plume, which is manifested as changes in compositional segregation across the coating’s thickness. The models have been validated with experimental data from Cranfield University’s EB-PVD coaters, published vapour pressure calculations and evaporation rate formulas described in the literature

    Non-destructive thickness measurement of thermal barrier coatings using terahertz radiation

    Get PDF
    A non-destructive thickness measurement technique based on terahertz (THz) reflectivity was successfully deployed to interrogate 7 wt.% yttria-stabilised zirconia thermal barrier coatings (TBCs) produced by electron-beam physical vapour deposition (EB-PVD). The THz technique was shown to produce accurate thickness maps for different samples with a resolution of 1 × 1 mm over a surface of 65 × 20 mm that were compared with direct examination of key cross-sections. All thickness measurements on different samples were calculated using a single value of refractive index. Small defects characteristic of EB-PVD, such as “carrot growths” and variations on column inclination, were evaluated and did not produce significant variations in the refractive index of the TBC. Moreover, the thickness maps correctly display thickness variations that are a consequence of the point-source nature of EB-PVD evaporation. In summary, this paper demonstrates the technique can be successfully deployed on large surfaces, and across different coatings of the same material produced under the same deposition conditions. It is shown that a single n value is required to map the thickness distribution for all samples. This combination of qualities indicates the potential of the technique for in-line control of TBC manufacture

    Randomised nano-/micro- impact testing – A novel experimental test method to simulate erosive damage caused by solid particle impacts

    Get PDF
    A novel randomised nano-/micro-scale impact test method has been developed to experimentally simulate particulate erosion where statistically distributed impacts with defined energy occur sequentially within the test area. Tests have been performed on two brittle glasses (fused silica and BK7) to easily highlight the interaction between impacts, as well as on two ceramic thermal barrier coating systems (TBCs, yttria stabilised zirconia, 7YSZ, and gadolinium zirconate, GZO) that experience erosion in service. Differences in erosion resistance were reproduced in the randomised impact tests, with GZO less impact resistant than 7YSZ, and BK7 significantly worse than fused silica. The impact data show that erosion resistance is influenced by different factors for the glasses (crack morphology, longer-length interaction of radial-lateral cracks in BK7 vs cone-cracking in fused silica) and TBCs (fracture toughness).Support from Innovate UK under Smart Award project #10020751, High temperature tools for designing sustainable erosion resistant coatings, is gratefully acknowledged

    Alternate transcription of the Toll-like receptor signaling cascade

    Get PDF
    BACKGROUND: Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. RESULTS: A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. CONCLUSION: Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-γ and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling

    A Cross-Study Transcriptional Analysis of Parkinson's Disease

    Get PDF
    The study of Parkinson's disease (PD), like other complex neurodegenerative disorders, is limited by access to brain tissue from patients with a confirmed diagnosis. Alternatively the study of peripheral tissues may offer some insight into the molecular basis of disease susceptibility and progression, but this approach still relies on brain tissue to benchmark relevant molecular changes against. Several studies have reported whole-genome expression profiling in post-mortem brain but reported concordance between these analyses is lacking. Here we apply a standardised pathway analysis to seven independent case-control studies, and demonstrate increased concordance between data sets. Moreover data convergence increased when the analysis was limited to the five substantia nigra (SN) data sets; this highlighted the down regulation of dopamine receptor signaling and insulin-like growth factor 1 (IGF1) signaling pathways. We also show that case-control comparisons of affected post mortem brain tissue are more likely to reflect terminal cytoarchitectural differences rather than primary pathogenic mechanisms. The implementation of a correction factor for dopaminergic neuronal loss predictably resulted in the loss of significance of the dopamine signaling pathway while axon guidance pathways increased in significance. Interestingly the IGF1 signaling pathway was also over-represented when data from non-SN areas, unaffected or only terminally affected in PD, were considered. Our findings suggest that there is greater concordance in PD whole-genome expression profiling when standardised pathway membership rather than ranked gene list is used for comparison

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Securing reform or fostering tyrants

    No full text
    corecore