11 research outputs found

    Design, synthesis and anthelmintic activity of 7-keto-sempervirol analogues

    Get PDF
    The plant-derived, diterpenoid 7-keto-sempervirol was recently reported to display moderate activity against larval stages of Schistosoma mansoni (IC50 = 19.1 μM) and Fasciola hepatica (IC50 = 17.7 μM), two related parasitic blood and liver flukes responsible for the neglected tropical diseases schistosomiasis and fascioliasis, respectively. Here, we aimed to increase the potency of 7-keto-sempervirol by total synthesis of 30 structural analogues. Subsequent screening of these new diterpenoids against juvenile and adult lifecycle stages of both parasites as well as the human HepG2 liver cell line and the bovine MDBK kidney cell line revealed structure-activity relationship trends. The most active analogue, 7d, displayed improved dual anthelmintic activity over 7-keto-sempervirol (IC50 ≈ 6 μM for larval blood flukes; IC50 ≈ 3 μM for juvenile liver flukes) and moderate selectivity (SI ≈ 4–5 for blood flukes, 8–13 for liver flukes compared to HepG2 and MDBK cells, respectively). Phenotypic studies using scanning electron microscopy revealed substantial tegumental alterations in both helminth species, supporting the hypothesis that the parasite surface is one of the main targets of this family of molecules. Further modifications of 7d could lead to greater potency and selectivity metrics resulting in a new class of broad-spectrum anthelmintic

    An Abeis procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni

    Get PDF
    Two economically and biomedically important platyhelminth species, Fasciola hepatica (liver fluke) and Schistosoma mansoni (blood fluke), are responsible for the neglected tropical diseases (NTDs) fasciolosis and schistosomiasis. Due to the absence of prophylactic vaccines, these NTDs are principally managed by the single class chemotherapies triclabendazole (F. hepatica) and praziquantel (S. mansoni). Unfortunately, liver fluke resistance to triclabendazole has been widely reported and blood fluke insensitivity/resistance to praziquantel has been observed in both laboratory settings as well as in endemic communities. Therefore, the identification of new anthelmintics is necessary for the sustainable control of these NTDs in both animal and human populations. Here, continuing our work with phytochemicals, we isolated ten triterpenoids from the mature bark of Abies species and assessed their anthelmintic activities against F. hepatica and S. mansoni larval and adult lifecycle stages. Full 1H and 13C NMR-mediated structural elucidation of the two most active triterpenoids revealed that a tetracyclic steroid-like nucleus core and a lactone side chain are associated with the observed anthelmintic effects. When compared to representative mammalian cell lines (MDBK and HepG2), the most potent triterpenoid (700015; anthelmintic EC50s range from 0.7 μM–15.6 μM) displayed anthelmintic selectivity (selectivity indices for F. hepatica: 13 for newly excysted juveniles, 46 for immature flukes, 2 for mature flukes; selectivity indices for S. mansoni: 14 for schistosomula, 9 for immature flukes, 4 for adult males and 3 for adult females) and induced severe disruption of surface membranes in both liver and blood flukes. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also severely inhibited by 700015. Together, our results describe the structural elucidation of a novel broad acting anthelmintic triterpenoid and support further investigations developing this compound into more potent analogues for the control of both fasciolosis and schistosomiasis. Keywords: Abies procera, Abies grandis, Triterpenoid, Anthelmintic drug discovery, Neglected tropical diseases, Fasciola hepatica, Schistosoma manson

    Flukicidal effects of abietane diterpenoid derived analogues against the food borne pathogen Fasciola hepatica.

    Get PDF
    Control of liver fluke infections remains a significant challenge in the livestock sector due to widespread distribution of drug resistant parasite populations. In particular, increasing prevalence and economic losses due to infection with Fasciola hepatica is a direct result of drug resistance to the gold standard flukicide, triclabendazole. Sustainable control of this significant zoonotic pathogen, therefore, urgently requires the identification of new anthelmintics. Plants represent a source of molecules with potential flukicidal effects and, amongst their secondary metabolites, the diterpenoid abietic acids can be isolated in large quantities. In this study, nineteen (19) chemically modified abietic acid analogues (MC_X) were first evaluated for their anthelmintic activities against F. hepatica newly excysted juveniles (NEJs, from the laboratory-derived Italian strain); from this, 6 analogues were secondly evaluated for their anthelmintic activities against adult wild strain flukes. One analogue, MC010, was progressed further against 8-week immature- and 12-week mature Italian strain flukes. Here, MC010 demonstrated moderate activity against both of these intra-mammalian fluke stages (with an adult fluke EC50 = 12.97 µM at 72 h post culture). Overt mammalian cell toxicity of MC010 was inferred from the Madin-Darby bovine kidney (MDBK) cell line (CC50 = 17.52 µM at 24 h post culture) and demonstrated that medicinal chemistry improvements are necessary before abietic acid analogues could be considered as potential anthelmintics against liver fluke pathogen

    Integrated Full-Scale Physical Experiments and Numerical Modeling of the Performance and Rehabilitation of Highway Embankments

    Get PDF
    Corresponding data set for Tran-SET Project No. 18GTLSU06. Abstract of the final report is stated below for reference: The study aimed to fundamentally understand how soil strength and hydraulic properties are impacted by recurring cycles of wetting and drying induced by climate variability, with the practical implication of forecasting the stability of highway embankment slopes. The review of literature on the effects of long-term cyclic wetting-drying phases on hydro-mechanical properties of clayey soils suggests that only a few cycles of wetting and drying can impact the strength and hydraulic conductivity, where the latter can increase several orders of magnitude. Laboratory model-scale experiments of Louisiana and Texas soils are still ongoing and will relate the laboratory test results to weathering cycles by accounting for parameters such as rainfall intensity and duration, evapotranspiration, temperature, and relative humidity. The objective of the laboratory testing was to determine the strength and unsaturated soil properties of samples collected from laboratory model-scale experiments and to investigate the subsequent changes in the hydro-mechanical properties of those clayey soils. For example, shrinkage test results provided a measure of the propensity and extent of strength loss incurred by a soil specimen when exposed to weathering cycles. Numerical modeling of highway embankments with material properties and test results obtained from lab testing were used to predict the factor of safety for an embankment in Texas

    In vitro culture of the zoonotic nematode Anisakis pegreffii (Nematoda, Anisakidae)

    No full text
    Abstract Background Anisakiasis is a foodborne disease caused by the third-stage larvae (L3) of two species belonging to the genus Anisakis: Anisakis pegreffii and Anisakis simplex sensu stricto. Both species have been the subject of different -omics studies undertaken in the past decade, but a reliable in vitro culture protocol that would enable a more versatile approach to functional studies has never been devised. In nature, A. pegreffii shows a polyxenous life-cycle. It reproduces in toothed whales (final host) and disseminates embryonated eggs via cetacean faeces in the water column. In the environment, a first- (L1) and second-stage larva (L2) develops inside the egg, and subsequently hatched L2 is ingested by a planktonic crustacean or small fish (intermediate host). In the crustacean pseudocoelom, the larva moults to the third stage (L3) and grows until the host is eaten by a fish or cephalopod (paratenic host). Infective L3 migrates into the visceral cavity of its paratenic host and remains in the state of paratenesis until a final host preys on the former. Once in the final host’s gastric chambers, L3 attaches to mucosa, moults in the fourth stage (L4) and closes its life-cycle by becoming reproductively mature. Methods Testing two commercially available media (RPMI 1640, Schneider’s Drosophila) in combination with each of the six different heat-inactivated sera, namely foetal bovine, rabbit, chicken, donkey, porcine and human serum, we have obtained the first reliable, fast and simple in vitro cultivation protocol for A. pegreffii. Results Schneider’s Drosophila insect media supplemented with 10% chicken serum allowed high reproducibility and survival of adult A. pegreffii. The maturity was reached already at the beginning of the third week in culture. From collected eggs, hatched L2 were maintained in culture for 2 weeks. The protocol also enabled the description of undocumented morphological and ultrastructural features of the parasite developmental stages. Conclusions Closing of the A. pegreffii life-cycle from L3 to reproducing adults is an important step from many research perspectives (e.g., vaccine and drug–target research, transgenesis, pathogenesis), but further effort is necessary to optimise the efficient moulting of L2 to infective L3. Graphical Abstrac

    Modified Hederagenin Derivatives Demonstrate Ex Vivo Anthelmintic Activity against Fasciola hepatica

    Get PDF
    Infection with Fasciola hepatica (liver fluke) causes fasciolosis (or fascioliasis) and poses a considerable economic as well as welfare burden to both the agricultural and animal health sectors. Here, we explore the ex vivo anthelmintic potential of synthetic derivatives of hederagenin, isolated in bulk from Hedera helix. Thirty-six compounds were initially screened against F. hepatica newly excysted juveniles (NEJs) of the Italian strain. Eleven of these compounds were active against NEJs and were selected for further study, using adult F. hepatica derived from a local abattoir (provenance unknown). From these eleven compounds, six demonstrated activity and were further assessed against immature liver flukes of the Italian strain. Subsequently, the most active compounds (n = 5) were further evaluated in ex vivo dose response experiments against adult Italian strain liver flukes. Overall, MC042 was identified as the most active molecule and the EC50 obtained from immature and adult liver fluke assays (at 24 h post co-culture) are estimated as 1.07 μM and 13.02 μM, respectively. When compared to the in vitro cytotoxicity of MDBK bovine cell line, MC042 demonstrated the highest anthelmintic selectivity (44.37 for immature and 3.64 for adult flukes). These data indicate that modified hederagenins display properties suitable for further investigations as candidate flukicides
    corecore