2 research outputs found

    Entropy of a Quantum Oscillator coupled to a Heat Bath and implications for Quantum Thermodynamics

    Get PDF
    The free energy of a quantum oscillator in an arbitrary heat bath at a temperature T is given by a "remarkable formula" which involves only a single integral. This leads to a corresponding simple result for the entropy. The low temperature limit is examined in detail and we obtain explicit results both for the case of an Ohmic heat bath and a radiation heat bath. More general heat bath models are also examined. This enables us to determine the entropy at zero temperature in order to check the third law of thermodynamics in the quantum regimeComment: International Conference on "Frontiers of Quantum and Mesoscopic Thermodynamics

    Decoherence in Nanostructures and Quantum Systems

    Get PDF
    Decoherence phenomena are pervasive in the arena of nanostructures but perhaps even more so in the study of the fundamentals of quantum mechanics and quantum computation. Since there has been little overlap between the studies in both arenas, this is an attempt to bridge the gap. Topics stressed include (a) wave packet spreading in a dissipative environment, a key element in all arenas, (b) the definition of a quantitative measure of decoherence, (c) the near zero and zero temperature limit, and (d) the key role played by initial conditions: system and environment entangled at all times so that one must use the density matrix (or Wigner distribution) for the complete system or initially decoupled system and environment so that use of a reduced density matrix or reduced Wigner distribution is feasible. Our approach utilizes generalized quantum Langevin equations and Wigner distributions
    corecore