15 research outputs found

    Counterion Effects on Nano-confined Metal-Drug-DNA Complexes

    Full text link
    We have explored morphology of DNA molecules bound with Cu-complexes of piroxicam molecules, a non-steroidal anti-inflammatory drug (NSAID), under one-dimensional confinement of thin films and have studied the effect of counterions present in a buffer. X-ray reflectivity at and away from the Cu K absorption edge and atomic force microscopy studies reveal that confinement segregates the drug molecules preferentially in a top layer of the DNA film, and counterions enhance this segregation

    Transgenic Biofortification of the Starchy Staple Cassava (Manihot esculenta) Generates a Novel Sink for Protein

    Get PDF
    Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181–194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications

    Modulation of Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion by Copper Coordination of These Drugs: Anchoring Effect

    No full text
    Membrane fusion, an integral event in several biological processes, is characterized by several intermediate steps guided by specific energy barriers. Hence, it requires the aid of fusogens to complete the process. Common fusogens, such as proteins/peptides, have the ability to overcome theses barriers by their conformational reorganization, an advantage not shared by small drug molecules. Hence, drug induced fusion at physiologically relevant drug concentrations is rare and occurs only in the case of the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs). To use drugs to induce and control membrane fusion in various biochemical processes requires the understanding of how different parameters modulate fusion. Also, fusion efficacy needs to be enhanced. Here we have synthesized and used Cu­(II) complexes of fusogenic oxicam NSAIDs, Meloxicam and Piroxicam, to induce fusion in model membranes monitored by using DSC, TEM, steady-state, and time-resolved spectroscopy. The ability of the complexes to anchor apposing model membranes to initiate/facilitate fusion has been demonstrated. This results in better fusion efficacy compared to the bare drugs. These complexes can take the fusion to its final step. Unlike other designed membrane anchors, the role of molecular recognition and strength of interaction between molecular partners is obliterated for these preformed Cu­(II)-NSAIDs
    corecore