11,876 research outputs found

    Optical Signatures of Spin-Orbit Interaction Effects in a Parabolic Quantum Dot

    Full text link
    We demonstrate here that the dipole-allowed optical absorption spectrum of a parabolic quantum dot subjected to an external magnetic field reflects the inter-electron interaction effects when the spin-orbit interaction is also taken into account. We have investigated the energy spectra and the dipole-allowed transition energies for up to four interacting electrons parabolically confined, and have uncovered several novel features in those spectra that are solely due to the SO interaction.Comment: 4 pages, 3 figure

    Energy levels and magneto-optical transitions in parabolic quantum dots with spin-orbit coupling

    Full text link
    We report on the electronic properties of few interacting electrons confined in a parabolic quantum dot based on a theoretical approach developed to investigate the influence of Bychkov-Rashba spin-orbit (SO) interaction on such a system. We note that the spin-orbit coupling profoundly influences the energy spectrum of interacting electrons in a quantum dot. Here we present accurate results for the energy levels and optical-absorption spectra for parabolic quantum dots containing upto four interacting electrons, in the presence of spin-orbit coupling and under the influence of an externally applied, perpendicular magnetic field. We have described in detail about a very accurate numerical scheme to evaluate these quantities. We have evaluated the effects of SO coupling on the Fock-Darwin spectra for quantum dots made out of three different semiconductor systems, InAs, InSb, and GaAs.Comment: expanded version of cond-mat/0501642 to be published in Phys. Rev. Let

    Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension

    Get PDF
    A repulsive-type magnetic bearing system has been fabricated in which the rotor of a vertical-shaft-type motor is levitated due to the repulsive force between two sets of permanent magnets. A novel arrangement of permanent magnets has been reported here, which has made the suspension of the rotor possible. The system is planned to be applied for pumping milks and other related products in the New Zealand dairy industry

    Shell Crossing Singularities in Quasi-Spherical Szekeres Models

    Full text link
    We investigate the occurrence of shell crossing singularities in quasi-spherical Szekeres dust models with or without a cosmological constant. We study the conditions for shell crossing singularity both from physical and geometrical point of view and they are in agreement.Comment: 10 latex pages, RevTex style, no figure

    Intersubband magnetophonon resonances in quantum cascade structures

    Full text link
    We report on our magnetotransport measurements of GaAs/GaAlAs quantum cascade structures in a magnetic field of up to 62 T. We observe novel quantum oscillations in tunneling current that are periodic in reciprocal magnetic field. We explain these oscillations as intersubband magnetophonon resonance due to electron relaxation by emission of either single optical or acoustic phonons. Our work also provides a non-optical in situ measurement of intersubband separations in quantum cascade structures.Comment: 5 pages, 4 figure

    Static displacements and chemical correlations in alloys

    Full text link
    Recent experiments in metallic solid solutions have revealed interesting correlations between static pair-displacements and the ordering behavior of these alloys. This paper discusses a simple theoretical model which successfully explains these observations and which provides a natural framework for analyzing experimental measurements of pair-displacements and chemical correlations in solid solutions. The utility and scope of this model is demonstrated by analyzing results of experiments on NiFeNi-Fe and CrFeCr-Fe alloys and results of simulations of CuAuCu-Au and CuAgCu-Ag alloys.Comment: 12 page

    On two-dimensionalization of three-dimensional turbulence in shell models

    Full text link
    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case

    Entropy and Temperature of a Static Granular Assembly

    Full text link
    Granular matter is comprised of a large number of particles whose collective behavior determines macroscopic properties such as flow and mechanical strength. A comprehensive theory of the properties of granular matter, therefore, requires a statistical framework. In molecular matter, equilibrium statistical mechanics, which is founded on the principle of conservation of energy, provides this framework. Grains, however, are small but macroscopic objects whose interactions are dissipative since energy can be lost through excitations of the internal degrees of freedom. In this work, we construct a statistical framework for static, mechanically stable packings of grains, which parallels that of equilibrium statistical mechanics but with conservation of energy replaced by the conservation of a function related to the mechanical stress tensor. Our analysis demonstrates the existence of a state function that has all the attributes of entropy. In particular, maximizing this state function leads to a well-defined granular temperature for these systems. Predictions of the ensemble are verified against simulated packings of frictionless, deformable disks. Our demonstration that a statistical ensemble can be constructed through the identification of conserved quantities other than energy is a new approach that is expected to open up avenues for statistical descriptions of other non-equilibrium systems.Comment: 5 pages, 4 figure

    Unified hydrodynamics theory of the lowest Landau level

    Full text link
    We propose a hydrodynamics theory of collective quantum Hall states, which describes incompressible liquids, hexatic liquid crystals, a bubble solid and a Wigner crystal states within a unified framework. The structure of the theory is uniquely determined by the space-time symmetry, and a symmetry with respect to static shear deformations. In agreement with recent experiments the theory predicts two gapped collective modes for incompressible liquids. We argue that the presence of the above two modes is a universal property of a magnetized two-dimensional collective liquid.Comment: RevTex, 8 pages. Revised and expanded versio
    corecore