32 research outputs found

    Should ACE2 be given a chance in COVID-19 therapeutics: a semi-systematic review of strategies enhancing ACE2

    Get PDF
    The severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has resulted in almost 28 million cases of COVID-19 (Corona virus disease-2019) and more than 900000 deaths worldwide since December 2019. In the absence of effective antiviral therapy and vaccine, treatment of COVID-19 is largely symptomatic. By making use of its spike (S) protein, the virus binds to its primary human cell receptor, angiotensin converting enzyme 2 (ACE2) which is present in the pulmonary epithelial cells as well as other organs. SARS-CoV-2 may cause a downregulation of ACE2. ACE2 plays a protective role in the pulmonary system through its Mas-receptor and alamandine-MrgD-TGR7 pathways. Loss of this protective effect could be a major component of COVID-19 pathogenesis. An attractive strategy in SARS-CoV-2 therapeutics would be to augment ACE2 either directly by supplementation or indirectly through drugs which increase its levels or stimulate its downstream players. In this semi-systematic review, we have analysed the pathophysiological interplay between ACE and ACE2 in the cardiopulmonary system, the modulation of these two proteins by SARS-CoV-2, and potential therapeutic avenues targeting ACE-Ang II and ACE2-Ang (1-7) axes, that can be utilized against COVID-19 disease progression

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Oxidative Stress and Neuroinflammation in Parkinson’s Disease: The Role of Dopamine Oxidation Products

    Get PDF
    Parkinson’s disease (PD) is a chronic neurodegenerative condition affecting more than 1% of people over 65 years old. It is characterized by the preferential degeneration of nigrostriatal dopaminergic neurons, which is responsible for the motor symptoms of PD patients. The pathogenesis of this multifactorial disorder is still elusive, hampering the discovery of therapeutic strategies able to suppress the disease’s progression. While redox alterations, mitochondrial dysfunctions, and neuroinflammation are clearly involved in PD pathology, how these processes lead to the preferential degeneration of dopaminergic neurons is still an unanswered question. In this context, the presence of dopamine itself within this neuronal population could represent a crucial determinant. In the present review, an attempt is made to link the aforementioned pathways to the oxidation chemistry of dopamine, leading to the formation of free radical species, reactive quinones and toxic metabolites, and sustaining a pathological vicious cycle

    α-Synuclein Toxicity in Drosophila melanogaster Is Enhanced by the Presence of Iron: Implications for Parkinson’s Disease

    No full text
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by the preferential loss of dopaminergic neurons and by the accumulation of intracellular inclusions mainly composed of α-synuclein (α-Syn). While the etiopathogenesis of the disorder is still elusive, recent experimental evidence supports the involvement of ferroptosis, an iron-dependent cell death pathway, in the pathogenesis of PD. In the present work, using different ferroptosis inducers and inhibitors, we evaluated, in vivo, the involvement of iron in the α-Syn-mediated toxicity. Using a Drosophila melanogaster model of PD based on the selective over-expression of α-Syn within dopaminergic neurons, we demonstrated that the over-expression of α-Syn promotes the accumulation of protein aggregates, which is accompanied by dopaminergic neurodegeneration, locomotor impairment, and lifespan reduction. These pathological phenotypes were further exacerbated by reduced intracellular levels of glutathione or increased concentrations of iron. Coherently, both the use of an iron chelator and the presence of the antioxidant compound N-acetylcysteine exerted protective effects. Overall, our results support the involvement of ferroptosis in the α-Syn-mediated toxicity

    α-Synuclein Toxicity in <i>Drosophila melanogaster</i> Is Enhanced by the Presence of Iron: Implications for Parkinson’s Disease

    No full text
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by the preferential loss of dopaminergic neurons and by the accumulation of intracellular inclusions mainly composed of α-synuclein (α-Syn). While the etiopathogenesis of the disorder is still elusive, recent experimental evidence supports the involvement of ferroptosis, an iron-dependent cell death pathway, in the pathogenesis of PD. In the present work, using different ferroptosis inducers and inhibitors, we evaluated, in vivo, the involvement of iron in the α-Syn-mediated toxicity. Using a Drosophila melanogaster model of PD based on the selective over-expression of α-Syn within dopaminergic neurons, we demonstrated that the over-expression of α-Syn promotes the accumulation of protein aggregates, which is accompanied by dopaminergic neurodegeneration, locomotor impairment, and lifespan reduction. These pathological phenotypes were further exacerbated by reduced intracellular levels of glutathione or increased concentrations of iron. Coherently, both the use of an iron chelator and the presence of the antioxidant compound N-acetylcysteine exerted protective effects. Overall, our results support the involvement of ferroptosis in the α-Syn-mediated toxicity

    Ascorbate induced cross-linking of oxyhemoglobin subunits

    No full text
    280-282Ascorbic acid during oxidation in vitro can generate H2O2 which induces non-disulphide covalent cross-linking of coincubated oxyhemoglobin. The cross-linking phenomenon mediated by H2O2 takes place possibly without the involvement, of hydroxyl radicals as evident from the failure of radical scavengers like mannitol and dimethyl sulphoxide as well as metal-chelator, to inhibit the process. This pro-oxidant effect of ascorbic acid may have physiological significance in red blood cells in vivo.</i
    corecore