17 research outputs found

    Inherited ataxia with slow saccades

    No full text
    Ataxia is a symptom of cerebellar dysfunction. Slowly progressive ataxia, dysarthria in an adult with a positive family history suggests an inherited cerebellar ataxia. We present an adult with gradually progressive ataxia and slow saccades. There was history of similar illness in his son. Genetic testing for spinocerebellar ataxia 2 was positive. We discuss the various inherited ataxias, causes of acute, progressive ataxia syndromes, episodic ataxias and ataxia associated with other neurological signs like peripheral neuropathy, pyramidal features, movement disorders and cognitive decline

    CRB1 heterozygotes with regional retinal dysfunction: implications for genetic testing of leber congenital amaurosis.

    No full text
    Contains fulltext : 50306.pdf (publisher's version ) (Closed access)PURPOSE: To test human CRB1 heterozygotes for possible clinical or functional retinal changes and to evaluate whether a patient with Leber congenital amaurosis (LCA) with CRB1 mutations not consistent with previously described CRB1 phenotypes carried a modifier allele in another LCA gene. METHODS: Seven unrelated heterozygous carriers of CRB1 mutations underwent phenotyping by full eye examinations (indirect ophthalmoscopy and slit lamp biomicroscopy) and functional testing (standard full-field electroretinography [ERG] and multifocal ERG). For genotyping of the LCA patients and their parents, denaturing high-performance liquid chromatography (dHPLC) analyses were performed, followed by sequence analysis of CRB1, followed by sequence analysis of the AIPL1 and CRX genes to identify a putative modifier effect in a patient with an atypical CRB1 phenotype. RESULTS: Reduced full-field ERG b-wave amplitudes were observed with scotopic -2 dB flash (140 microV; P < 0.05), normal full-field cone ERGs, and significant regional retinal dysfunction on mfERG in five of seven carriers of CRB1 mutations. A known AIPL1 mutation (p. R302L) was identified as a potential modifier allele in a patient with LCA carrying two CRB1 mutations and with a prominent maculopathy. CONCLUSIONS: In human heterozygotes of CRB1 mutations (parents of offspring with LCA), distinctive regional retinal dysfunctions were found by multifocal ERG measurements that were consistent with the focal histologic abnormalities reported for the two CRB1 knockout mice models. This phenotypic finding may identify CRB1 carriers and point to the causal gene defect in affected LCA offspring, significantly facilitating the molecular diagnostic process. Evidence suggests a modifier allele in AIPL1 in a patient with LCA with prominent atrophic macular lesions and homozygous defects in CRB1
    corecore