9 research outputs found

    Mapping of variations in child stunting, wasting and underweight within the states of India: the Global Burden of Disease Study 2000–2017

    Get PDF
    Background To inform actions at the district level under the National Nutrition Mission (NNM), we assessed the prevalence trends of child growth failure (CGF) indicators for all districts in India and inequality between districts within the states. Methods We assessed the trends of CGF indicators (stunting, wasting and underweight) from 2000 to 2017 across the districts of India, aggregated from 5 × 5 km grid estimates, using all accessible data from various surveys with subnational geographical information. The states were categorised into three groups using their Socio-demographic Index (SDI) levels calculated as part of the Global Burden of Disease Study based on per capita income, mean education and fertility rate in women younger than 25 years. Inequality between districts within the states was assessed using coefficient of variation (CV). We projected the prevalence of CGF indicators for the districts up to 2030 based on the trends from 2000 to 2017 to compare with the NNM 2022 targets for stunting and underweight, and the WHO/UNICEF 2030 targets for stunting and wasting. We assessed Pearson correlation coefficient between two major national surveys for district-level estimates of CGF indicators in the states. Findings The prevalence of stunting ranged 3.8-fold from 16.4% (95% UI 15.2–17.8) to 62.8% (95% UI 61.5–64.0) among the 723 districts of India in 2017, wasting ranged 5.4-fold from 5.5% (95% UI 5.1–6.1) to 30.0% (95% UI 28.2–31.8), and underweight ranged 4.6-fold from 11.0% (95% UI 10.5–11.9) to 51.0% (95% UI 49.9–52.1). 36.1% of the districts in India had stunting prevalence 40% or more, with 67.0% districts in the low SDI states group and only 1.1% districts in the high SDI states with this level of stunting. The prevalence of stunting declined significantly from 2010 to 2017 in 98.5% of the districts with a maximum decline of 41.2% (95% UI 40.3–42.5), wasting in 61.3% with a maximum decline of 44.0% (95% UI 42.3–46.7), and underweight in 95.0% with a maximum decline of 53.9% (95% UI 52.8–55.4). The CV varied 7.4-fold for stunting, 12.2-fold for wasting, and 8.6-fold for underweight between the states in 2017; the CV increased for stunting in 28 out of 31 states, for wasting in 16 states, and for underweight in 20 states from 2000 to 2017. In order to reach the NNM 2022 targets for stunting and underweight individually, 82.6% and 98.5% of the districts in India would need a rate of improvement higher than they had up to 2017, respectively. To achieve the WHO/UNICEF 2030 target for wasting, all districts in India would need a rate of improvement higher than they had up to 2017. The correlation between the two national surveys for district-level estimates was poor, with Pearson correlation coefficient of 0.7 only in Odisha and four small north-eastern states out of the 27 states covered by these surveys. Interpretation CGF indicators have improved in India, but there are substantial variations between the districts in their magnitude and rate of decline, and the inequality between districts has increased in a large proportion of the states. The poor correlation between the national surveys for CGF estimates highlights the need to standardise collection of anthropometric data in India. The district-level trends in this report provide a useful reference for targeting the efforts under NNM to reduce CGF across India and meet the Indian and global targets. Keywords Child growth failureDistrict-levelGeospatial mappingInequalityNational Nutrition MissionPrevalenceStuntingTime trendsUnder-fiveUndernutritionUnderweightWastingWHO/UNICEF target

    The burden of mental disorders across the states of India: the Global Burden of Disease Study 1990–2017

    No full text
    Background: Mental disorders are among the leading causes of non-fatal disease burden in India, but a systematic understanding of their prevalence, disease burden, and risk factors is not readily available for each state of India. In this report, we describe the prevalence and disease burden of each mental disorder for the states of India, from 1990 to 2017. Methods: We used all accessible data from multiple sources to estimate the prevalence of mental disorders, years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by these disorders for all the states of India from 1990 to 2017, as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We assessed the heterogeneity and time trends of mental disorders across the states of India. We grouped states on the basis of their Socio-demographic Index (SDI), which is a composite measure of per-capita income, mean education, and fertility rate in women younger than 25 years. We also assessed the association of major mental disorders with suicide deaths. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings: In 2017, 197·3 million (95% UI 178·4–216·4) people had mental disorders in India, including 45·7 million (42·4–49·8) with depressive disorders and 44·9 million (41·2–48·9) with anxiety disorders. We found a significant, but modest, correlation between the prevalence of depressive disorders and suicide death rate at the state level for females (r=0·33, p=0·0009) and males (r=0·19, p=0·015). The contribution of mental disorders to the total DALYs in India increased from 2·5% (2·0–3·1) in 1990 to 4·7% (3·7–5·6) in 2017. In 2017, depressive disorders contributed the most to the total mental disorders DALYs (33·8%, 29·5–38·5), followed by anxiety disorders (19·0%, 15·9–22·4), idiopathic developmental intellectual disability (IDID; 10·8%, 6·3–15·9), schizophrenia (9·8%, 7·7–12·4), bipolar disorder (6·9%, 4·9–9·6), conduct disorder (5·9%, 4·0–8·1), autism spectrum disorders (3·2%, 2·7–3·8), eating disorders (2·2%, 1·7–2·8), and attention-deficit hyperactivity disorder (ADHD; 0·3%, 0·2–0·5); other mental disorders comprised 8·0% (6·1–10·1) of DALYs. Almost all (>99·9%) of these DALYs were made up of YLDs. The DALY rate point estimates of mental disorders with onset predominantly in childhood and adolescence (IDID, conduct disorder, autism spectrum disorders, and ADHD) were higher in low SDI states than in middle SDI and high SDI states in 2017, whereas the trend was reversed for mental disorders that manifest predominantly during adulthood. Although the prevalence of mental disorders with onset in childhood and adolescence decreased in India from 1990 to 2017, with a stronger decrease in high SDI and middle SDI states than in low SDI states, the prevalence of mental disorders that manifest predominantly during adulthood increased during this period. Interpretation: One in seven Indians were affected by mental disorders of varying severity in 2017. The proportional contribution of mental disorders to the total disease burden in India has almost doubled since 1990. Substantial variations exist between states in the burden from different mental disorders and in their trends over time. These state-specific trends of each mental disorder reported here could guide appropriate policies and health system response to more effectively address the burden of mental disorders in India. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    Gender differentials and state variations in suicide deaths in India: the Global Burden of Disease Study 1990–2016

    No full text
    Summary: Background: A systematic understanding of suicide mortality trends over time at the subnational level for India's 1·3 billion people, 18% of the global population, is not readily available. Thus, we aimed to report time trends of suicide deaths, and the heterogeneity in its distribution between the states of India from 1990 to 2016. Methods: As part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016, we estimated suicide death rates (SDRs) for both sexes in each state of India from 1990 to 2016. We used various data sources for estimating cause-specific mortality in India. For suicide mortality in India before 2000, estimates were based largely on GBD covariates. For each state, we calculated the ratio of the observed SDR to the rate expected in geographies globally with similar GBD Socio-demographic Index in 2016 (ie, the observed-to-expected ratio); and assessed the age distribution of suicide deaths, and the men-to-women ratio of SDR over time. Finally, we assessed the probability for India and the states of reaching the Sustainable Development Goal (SDG) target of a one-third reduction in SDR from 2015 to 2030, using location-wise trends of the age-standardised SDR from 1990 to 2016. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings: There were 230 314 (95% UI 194 058–250 260) suicide deaths in India in 2016. India's contribution to global suicide deaths increased from 25·3% in 1990 to 36·6% in 2016 among women, and from 18·7% to 24·3% among men. Age-standardised SDR among women in India reduced by 26·7% from 20·0 (95% UI 16·5–23·5) in 1990 to 14·7 (13·1–16·2) per 100 000 in 2016, but the age-standardised SDR among men was the same in 1990 (22·3 [95% UI 14·4–27·4] per 100 000) and 2016 (21·2 [14·6–23·6] per 100 000). SDR in women was 2·1 times higher in India than the global average in 2016, and the observed-to-expected ratio was 2·74, ranging from 0·45 to 4·54 between the states. SDR in men was 1·4 times higher in India than the global average in 2016, with an observed-to-expected ratio of 1·31, ranging from 0·40 to 2·42 between the states. There was a ten-fold variation between the states in the SDR for women and six-fold variation for men in 2016. The men-to-women ratio of SDR for India was 1·34 in 2016, ranging from 0·97 to 4·11 between the states. The highest age-specific SDRs among women in 2016 were for ages 15–29 years and 75 years or older, and among men for ages 75 years or older. Suicide was the leading cause of death in India in 2016 for those aged 15–39 years; 71·2% of the suicide deaths among women and 57·7% among men were in this age group. If the trends observed up to 2016 continue, the probability of India achieving the SDG SDR reduction target in 2030 is zero, and the majority of the states with 81·3% of India's population have less than 10% probability, three states have a probability of 10·3–15·0%, and six have a probability of 25·1–36·7%. Interpretation: India's proportional contribution to global suicide deaths is high and increasing. SDR in India is higher than expected for its Socio-Demographic Index level, especially for women, with substantial variations in the magnitude and men-to-women ratio between the states. India must develop a suicide prevention strategy that takes into account these variations in order to address this major public health problem. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    The burden of chronic respiratory diseases and their heterogeneity across the states of India: the Global Burden of Disease Study 1990–2016

    No full text
    Summary: Background: India has 18% of the global population and an increasing burden of chronic respiratory diseases. However, a systematic understanding of the distribution of chronic respiratory diseases and their trends over time is not readily available for all of the states of India. Our aim was to report the trends in the burden of chronic respiratory diseases and the heterogeneity in their distribution in all states of India between 1990 and 2016. Methods: Using all accessible data from multiple sources, we estimated the prevalence of major chronic respiratory diseases and the deaths and disability-adjusted life-years (DALYs) caused by them for every state of India from 1990 to 2016 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016. We assessed heterogeneity in the burden of chronic obstructive pulmonary disease (COPD) and asthma across the states of India. The states were categorised into four groups based on their epidemiological transition level (ETL). ETL was defined as the ratio of DALYs from communicable diseases to those from non-communicable diseases and injuries combined, with a low ratio denoting high ETL and vice versa. We also assessed the contribution of risk factors to DALYs due to COPD. We compared the burden of chronic respiratory diseases in India against the global average in GBD 2016. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings: The contribution of chronic respiratory diseases to the total DALYs in India increased from 4·5% (95% UI 4·0–4·9) in 1990 to 6·4% (5·8–7·0) in 2016. Of the total global DALYs due to chronic respiratory diseases in 2016, 32·0% occurred in India. COPD and asthma were responsible for 75·6% and 20·0% of the chronic respiratory disease DALYs, respectively, in India in 2016. The number of cases of COPD in India increased from 28·1 million (27·0–29·2) in 1990 to 55·3 million (53·1–57·6) in 2016, an increase in prevalence from 3·3% (3·1–3·4) to 4·2% (4·0–4·4). The age-standardised COPD prevalence and DALY rates in 2016 were highest in the less developed low ETL state group. There were 37·9 million (35·7–40·2) cases of asthma in India in 2016, with similar prevalence in the four ETL state groups, but the highest DALY rate was in the low ETL state group. The highest DALY rates for both COPD and asthma in 2016 were in the low ETL states of Rajasthan and Uttar Pradesh. The DALYs per case of COPD and asthma were 1·7 and 2·4 times higher in India than the global average in 2016, respectively; most states had higher rates compared with other locations worldwide at similar levels of Socio-demographic Index. Of the DALYs due to COPD in India in 2016, 53·7% (43·1–65·0) were attributable to air pollution, 25·4% (19·5–31·7) to tobacco use, and 16·5% (14·1–19·2) to occupational risks, making these the leading risk factors for COPD. Interpretation: India has a disproportionately high burden of chronic respiratory diseases. The increasing contribution of these diseases to the overall disease burden across India and the high rate of health loss from them, especially in the less developed low ETL states, highlights the need for focused policy interventions to address this significant cause of disease burden in India. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    The increasing burden of diabetes and variations among the states of India: the Global Burden of Disease Study 1990–2016

    No full text
    Summary: Background: The burden of diabetes is increasing rapidly in India but a systematic understanding of its distribution and time trends is not available for every state of India. We present a comprehensive analysis of the time trends and heterogeneity in the distribution of diabetes burden across all states of India between 1990 and 2016. Methods: We analysed the prevalence and disability-adjusted life-years (DALYs) of diabetes in the states of India from 1990 to 2016 using all available data sources that could be accessed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, and assessed heterogeneity across the states. The states were placed in four groups based on epidemiological transition level (ETL), defined on the basis of the ratio of DALYs from communicable diseases to those from non-communicable diseases and injuries combined, with a low ratio denoting high ETL and vice versa. We assessed the contribution of risk factors to diabetes DALYs and the relation of overweight (body-mass index 25 kg/m2 or more) with diabetes prevalence. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings: The number of people with diabetes in India increased from 26·0 million (95% UI 23·4–28·6) in 1990 to 65·0 million (58·7–71·1) in 2016. The prevalence of diabetes in adults aged 20 years or older in India increased from 5·5% (4·9–6·1) in 1990 to 7·7% (6·9–8·4) in 2016. The prevalence in 2016 was highest in Tamil Nadu and Kerala (high ETL) and Delhi (higher-middle ETL), followed by Punjab and Goa (high ETL) and Karnataka (higher-middle ETL). The age-standardised DALY rate for diabetes increased in India by 39·6% (32·1–46·7) from 1990 to 2016, which was the highest increase among major non-communicable diseases. The age-standardised diabetes prevalence and DALYs increased in every state, with the percentage increase among the highest in several states in the low and lower-middle ETL state groups. The most important risk factor for diabetes in India was overweight to which 36·0% (22·6–49·2) of the diabetes DALYs in 2016 could be attributed. The prevalence of overweight in adults in India increased from 9·0% (8·7–9·3) in 1990 to 20·4% (19·9–20·8) in 2016; this prevalence increased in every state of the country. For every 100 overweight adults aged 20 years or older in India, there were 38 adults (34–42) with diabetes, compared with the global average of 19 adults (17–21) in 2016. Interpretation: The increase in health loss from diabetes since 1990 in India is the highest among major non-communicable diseases. With this increase observed in every state of the country, and the relative rate of increase highest in several less developed low ETL states, policy action that takes these state-level differences into account is needed urgently to control this potentially explosive public health situation. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    The changing patterns of cardiovascular diseases and their risk factors in the states of India: the Global Burden of Disease Study 1990–2016

    No full text
    Summary: Background: The burden of cardiovascular diseases is increasing in India, but a systematic understanding of its distribution and time trends across all the states is not readily available. In this report, we present a detailed analysis of how the patterns of cardiovascular diseases and major risk factors have changed across the states of India between 1990 and 2016. Methods: We analysed the prevalence and disability-adjusted life-years (DALYs) due to cardiovascular diseases and the major component causes in the states of India from 1990 to 2016, using all accessible data sources as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016. We placed states into four groups based on epidemiological transition level (ETL), defined using the ratio of DALYs from communicable diseases to those from non-communicable diseases and injuries combined, with a low ratio denoting high ETL and vice versa. We assessed heterogeneity in the burden of major cardiovascular diseases across the states of India, and the contribution of risk factors to cardiovascular diseases. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings: Overall, cardiovascular diseases contributed 28·1% (95% UI 26·5–29·1) of the total deaths and 14·1% (12·9–15·3) of the total DALYs in India in 2016, compared with 15·2% (13·7–16·2) and 6·9% (6·3–7·4), respectively, in 1990. In 2016, there was a nine times difference between states in the DALY rate for ischaemic heart disease, a six times difference for stroke, and a four times difference for rheumatic heart disease. 23·8 million (95% UI 22·6–25·0) prevalent cases of ischaemic heart disease were estimated in India in 2016, and 6·5 million (6·3–6·8) prevalent cases of stroke, a 2·3 times increase in both disorders from 1990. The age-standardised prevalence of both ischaemic heart disease and stroke increased in all ETL state groups between 1990 and 2016, whereas that of rheumatic heart disease decreased; the increase for ischaemic heart disease was highest in the low ETL state group. 53·4% (95% UI 52·6–54·6) of crude deaths due to cardiovascular diseases in India in 2016 were among people younger than 70 years, with a higher proportion in the low ETL state group. The leading overlapping risk factors for cardiovascular diseases in 2016 included dietary risks (56·4% [95% CI 48·5–63·9] of cardiovascular disease DALYs), high systolic blood pressure (54·6% [49·0–59·8]), air pollution (31·1% [29·0–33·4]), high total cholesterol (29·4% [24·3–34·8]), tobacco use (18·9% [16·6–21·3]), high fasting plasma glucose (16·7% [11·4–23·5]), and high body-mass index (14·7% [8·3–22·0]). The prevalence of high systolic blood pressure, high total cholesterol, and high fasting plasma glucose increased generally across all ETL state groups from 1990 to 2016, but this increase was variable across the states; the prevalence of smoking decreased during this period in all ETL state groups. Interpretation: The burden from the leading cardiovascular diseases in India—ischaemic heart disease and stroke—varies widely between the states. Their increasing prevalence and that of several major risk factors in every part of India, especially the highest increase in the prevalence of ischaemic heart disease in the less developed low ETL states, indicates the need for urgent policy and health system response appropriate for the situation in each state. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017

    No full text
    Summary: Background: Air pollution is a major planetary health risk, with India estimated to have some of the worst levels globally. To inform action at subnational levels in India, we estimated the exposure to air pollution and its impact on deaths, disease burden, and life expectancy in every state of India in 2017. Methods: We estimated exposure to air pollution, including ambient particulate matter pollution, defined as the annual average gridded concentration of PM2.5, and household air pollution, defined as percentage of households using solid cooking fuels and the corresponding exposure to PM2.5, across the states of India using accessible data from multiple sources as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. The states were categorised into three Socio-demographic Index (SDI) levels as calculated by GBD 2017 on the basis of lag-distributed per-capita income, mean education in people aged 15 years or older, and total fertility rate in people younger than 25 years. We estimated deaths and disability-adjusted life-years (DALYs) attributable to air pollution exposure, on the basis of exposure–response relationships from the published literature, as assessed in GBD 2017; the proportion of total global air pollution DALYs in India; and what the life expectancy would have been in each state of India if air pollution levels had been less than the minimum level causing health loss. Findings: The annual population-weighted mean exposure to ambient particulate matter PM2·5 in India was 89·9 μg/m3 (95% uncertainty interval [UI] 67·0–112·0) in 2017. Most states, and 76·8% of the population of India, were exposed to annual population-weighted mean PM2·5 greater than 40 μg/m3, which is the limit recommended by the National Ambient Air Quality Standards in India. Delhi had the highest annual population-weighted mean PM2·5 in 2017, followed by Uttar Pradesh, Bihar, and Haryana in north India, all with mean values greater than 125 μg/m3. The proportion of population using solid fuels in India was 55·5% (54·8–56·2) in 2017, which exceeded 75% in the low SDI states of Bihar, Jharkhand, and Odisha. 1·24 million (1·09–1·39) deaths in India in 2017, which were 12·5% of the total deaths, were attributable to air pollution, including 0·67 million (0·55–0·79) from ambient particulate matter pollution and 0·48 million (0·39–0·58) from household air pollution. Of these deaths attributable to air pollution, 51·4% were in people younger than 70 years. India contributed 18·1% of the global population but had 26·2% of the global air pollution DALYs in 2017. The ambient particulate matter pollution DALY rate was highest in the north Indian states of Uttar Pradesh, Haryana, Delhi, Punjab, and Rajasthan, spread across the three SDI state groups, and the household air pollution DALY rate was highest in the low SDI states of Chhattisgarh, Rajasthan, Madhya Pradesh, and Assam in north and northeast India. We estimated that if the air pollution level in India were less than the minimum causing health loss, the average life expectancy in 2017 would have been higher by 1·7 years (1·6–1·9), with this increase exceeding 2 years in the north Indian states of Rajasthan, Uttar Pradesh, and Haryana. Interpretation: India has disproportionately high mortality and disease burden due to air pollution. This burden is generally highest in the low SDI states of north India. Reducing the substantial avoidable deaths and disease burden from this major environmental risk is dependent on rapid deployment of effective multisectoral policies throughout India that are commensurate with the magnitude of air pollution in each state. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    Subnational mapping of under-5 and neonatal mortality trends in India: the Global Burden of Disease Study 2000-17

    Get PDF
    Background India has made substantial progress in improving child survival over the past few decades, but a comprehensive understanding of child mortality trends at disaggregated geographical levels is not available. We present a detailed analysis of subnational trends of child mortality to inform efforts aimed at meeting the India National Health Policy (NHP) and Sustainable Development Goal (SDG) targets for child mortality. Methods We assessed the under-5 mortality rate (U5MR) and neonatal mortality rate (NMR) from 2000 to 2017 in 5 × 5 km grids across India, and for the districts and states of India, using all accessible data from various sources including surveys with subnational geographical information. The 31 states and groups of union territories were categorised into three groups using their Socio-demographic Index (SDI) level, calculated as part of the Global Burden of Diseases, Injuries, and Risk Factors Study on the basis of per-capita income, mean education, and total fertility rate in women younger than 25 years. Inequality between districts within the states was assessed using the coefficient of variation. We projected U5MR and NMR for the states and districts up to 2025 and 2030 on the basis of the trends from 2000 to 2017 and compared these projections with the NHP 2025 and SDG 2030 targets for U5MR (23 deaths and 25 deaths per 1000 livebirths, respectively) and NMR (16 deaths and 12 deaths per 1000 livebirths, respectively). We assessed the causes of child death and the contribution of risk factors to child deaths at the state level. Findings U5MR in India decreased from 83·1 (95% uncertainty interval [UI] 76·7–90·1) in 2000 to 42·4 (36·5–50·0) per 1000 livebirths in 2017, and NMR from 38·0 (34·2–41·6) to 23·5 (20·1–27·8) per 1000 livebirths. U5MR varied 5·7 times between the states of India and 10·5 times between the 723 districts of India in 2017, whereas NMR varied 4·5 times and 8·0 times, respectively. In the low SDI states, 275 (88%) districts had a U5MR of 40 or more per 1000 livebirths and 291 (93%) districts had an NMR of 20 or more per 1000 livebirths in 2017. The annual rate of change from 2010 to 2017 varied among the districts from a 9·02% (95% UI 6·30–11·63) reduction to no significant change for U5MR and from an 8·05% (95% UI 5·34–10·74) reduction to no significant change for NMR. Inequality between districts within the states increased from 2000 to 2017 in 23 of the 31 states for U5MR and in 24 states for NMR, with the largest increases in Odisha and Assam among the low SDI states. If the trends observed up to 2017 were to continue, India would meet the SDG 2030 U5MR target but not the SDG 2030 NMR target or either of the NHP 2025 targets. To reach the SDG 2030 targets individually, 246 (34%) districts for U5MR and 430 (59%) districts for NMR would need a higher rate of improvement than they had up to 2017. For all major causes of under-5 death in India, the death rate decreased between 2000 and 2017, with the highest decline for infectious diseases, intermediate decline for neonatal disorders, and the smallest decline for congenital birth defects, although the magnitude of decline varied widely between the states. Child and maternal malnutrition was the predominant risk factor, to which 68·2% (65·8–70·7) of under-5 deaths and 83·0% (80·6–85·0) of neonatal deaths in India could be attributed in 2017; 10·8% (9·1–12·4) of under-5 deaths could be attributed to unsafe water and sanitation and 8·8% (7·0–10·3) to air pollution. Interpretation India has made gains in child survival, but there are substantial variations between the states in the magnitude and rate of decline in mortality, and even higher variations between the districts of India. Inequality between districts within states has increased for the majority of the states. The district-level trends presented here can provide crucial guidance for targeted efforts needed in India to reduce child mortality to meet the Indian and global child survival targets. District-level mortality trends along with state-level trends in causes of under-5 and neonatal death and the risk factors in this Article provide a comprehensive reference for further planning of child mortality reduction in India
    corecore