692 research outputs found

    Far infrared properties of the rare-earth scandate DyScO3

    Full text link
    We present reflectance measurements in the infrared region on a single crystal the rare earth scandate DyScO3. Measurements performed between room temperature and 10 K allow to determine the frequency of the infrared-active phonons, never investigated experimentally, and to get information on their temperature dependence. A comparison with the phonon peak frequency resulting from ab-initio computations is also provided. We finally report detailed data on the frequency dependence of the complex refractive index of DyScO3 in the terahertz region, which is important in the analysis of terahertz measurements on thin films deposited on DyScO3

    Self-consistent solution for the polarized vacuum in a no-photon QED model

    Full text link
    We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced from no-photon QED. The associated functional is bounded from below. In the presence of an external field, a minimizer, if it exists, is interpreted as the polarized vacuum and it solves a self-consistent equation. In a recent paper math-ph/0403005, we proved the convergence of the iterative fixed-point scheme naturally associated with this equation to a global minimizer of the BDF functional, under some restrictive conditions on the external potential, the ultraviolet cut-off Λ\Lambda and the bare fine structure constant α\alpha. In the present work, we improve this result by showing the existence of the minimizer by a variational method, for any cut-off Λ\Lambda and without any constraint on the external field. We also study the behaviour of the minimizer as Λ\Lambda goes to infinity and show that the theory is "nullified" in that limit, as predicted first by Landau: the vacuum totally kills the external potential. Therefore the limit case of an infinite cut-off makes no sense both from a physical and mathematical point of view. Finally, we perform a charge and density renormalization scheme applying simultaneously to all orders of the fine structure constant α\alpha, on a simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge

    Phonons in the multiferroic langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} : evidences for symmetry breaking

    Get PDF
    The chiral langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} is a multiferroic compound. While its magnetic order below T_N\_N=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling

    Magnetic properties of the honeycomb oxide Na2_2Co2_2TeO6_6

    Full text link
    We have studied the magnetic properties of Na2_2Co2_2TeO6_6, which features a honeycomb lattice of magnetic Co2+^{2+} ions, through macroscopic characterization and neutron diffraction on a powder sample. We have shown that this material orders in a zig-zag antiferromagnetic structure. In addition to allowing a linear magnetoelectric coupling, this magnetic arrangement displays very peculiar spatial magnetic correlations, larger in the honeycomb planes than between the planes, which do not evolve with the temperature. We have investigated this behavior by Monte Carlo calculations using the J1J_1-J2J_2-J3J_3 model on a honeycomb lattice with a small interplane interaction. Our model reproduces the experimental neutron structure factor, although its absence of temperature evolution must be due to additional ingredients, such as chemical disorder or quantum fluctuations enhanced by the proximity to a phase boundary.Comment: 9 pages, 13 figure

    Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering

    Get PDF
    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and non-resonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom -- the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usual through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting ones ability to quantitively characterize the coupling. Here we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an 8-band model of copper oxides, we study the contributions from the lowest order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross-section as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and non-resonant x-ray scattering, as well as Raman and infrared conductivity.Comment: 10 pages, 10 figure

    Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation

    Full text link
    We consider a generalized Dirac-Fock type evolution equation deduced from no-photon Quantum Electrodynamics, which describes the self-consistent time-evolution of relativistic electrons, the observable ones as well as those filling up the Dirac sea. This equation has been originally introduced by Dirac in 1934 in a simplified form. Since we work in a Hartree-Fock type approximation, the elements describing the physical state of the electrons are infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced by Chaix-Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989), and recently established by Hainzl-Lewin-Sere, we prove the existence of global-in-time solutions of the considered evolution equation.Comment: 12 pages; more explanations added, some final (minor) corrections include

    Phase transition close to room temperature in BiFeO3 thin films

    Full text link
    BiFeO3 (BFO) multiferroic oxide has a complex phase diagram that can be mapped by appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, displays a reversible temperature-induced phase transition at about 100\circ, thus close to room temperature.Comment: accepted in J. Phys.: Condens. Matter (Fast Track Communication

    Three dimensional collective charge excitations in electron-doped cuprate superconductors

    Full text link
    High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.Comment: This is the version of first submission. The revised manuscript according to peer reviews is now accepted by Nature and will be published online on 31st Oct., 201
    • …
    corecore