41 research outputs found

    Anticancer activity of Momordica cochinchinensis (red gac) aril and the impact of varietal diversity

    Get PDF
    Background: Momordica cochinchinensis (Cucurbitaceae) is a nutritionally and medicinally important fruit restricted to South East Asia with diverse morphological and genetic variations but there is limited information on its medicinal potential. Methods: M. cochinchinensis aril from 44 different samples in Australia, Thailand and Vietnam were extracted using different solvents and tested for its anticancer potential. Anticancer activity of M. cochinchinensis aril on breast cancer (MCF7 and BT474) and melanoma (MM418C1 and D24) cells were compared to control fibroblasts (NHDF). The cytotoxicity of the cells following treatment with the aril extract was determined using CCK-8 assay. Biochemical and morphological changes were analysed using flow cytometry, confocal and transmission electron microscopy to determine the mechanism of cell death. Results: The water extract from the aril of M. cochinchinensis elicited significantly higher cytotoxicity towards breast cancer and melanoma cells than the HAE extract. The IC50 concentration for the crude water extract ranged from 0.49 to 0.73 mg/mL and induced both apoptotic and necrotic cell death in a dose- and time-dependant manner with typical biochemical and morphological characteristics. The greatest cytotoxicity was observed from Northern Vietnam samples which caused 70 and 50% melanoma and breast cancer cell death, respectively. Conclusions: The water extract of M. cochinchinensis aril caused significant apoptosis and necrosis of breast cancer and melanoma cells, with varieties from Northern Vietnam possessing superior activity. This highlights the potential of this fruit in the development of novel anticancer agents against such tumours, with specific regions on where to collect the best variety and extraction solvent for optimum activity

    Hybrid self‐assembling peptide/gelatin methacrylate (gelma) bioink blend for improved bioprintability and primary myoblast response

    Get PDF
    Organ fabrication as the solution to renewable donor demands requires the ability to spatially deposit viable cells into biologically relevant constructs necessitating reliable and effective cell deposition through bioprinting and the subsequent ability to mature. However, effective bioink development demands advances in both printability and control of cellular response. Effective bioinks are designed to retain shape fidelity, influence cellular behavior, having bioactive morphologies stiffness and highly hydrated environment. Hybrid hydrogels are promising candidates as they reduce the need to re‐engineer materials for tissue‐specific properties, with each component offering beneficial properties. Herein, a multicomponent bioink is developed whereby gelatin methacrylate (GelMA) and fluorenylmethoxycarbonyprotected self‐assembling peptides (Fmoc‐SAPs) undergo coassembly to yield a tuneable bioink. This study shows that the reported fibronectin‐inspired fmoc‐SAPs present cell attachment epitopes RGD and PHSRN in the form of bioactive nanofibers and that the GelMA enables superior printability, stability in media, and controlled mechanical properties. Importantly, when in the hybrid format, no disruption to either the methacrylate crosslinking of GelMA, or self‐assembled peptide fibril formation is observed. Finally, studies with primary myoblasts show over 98% viability at 72 h and differentiation into fused myotubes at one and two weeks demonstrate the utility of the material as a functional bioink for muscle engineering. In this work, muscle tissue is 3D‐bioprinted with a novel bioink formulation. The bioink presents fibrous bioactive properties of the body's native scaffold, while also improving biofabrication outcomes. Self‐assembling peptides are combined with GelMA creating a hybrid bioink. This work sets the stage for future hybrid bioinks for muscle biofabrication

    Spatial Localisation of Actin Filaments across Developmental Stages of the Malaria Parasite

    Get PDF
    Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu

    Plasmodium falciparum Merozoite Invasion Is Inhibited by Antibodies that Target the PfRh2a and b Binding Domains

    Get PDF
    Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes

    An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum

    Get PDF
    Invasion of erythrocytes by Plasmodium falciparum involves a complex cascade of protein-protein interactions between parasite ligands and host receptors. The reticulocyte binding-like homologue (PfRh) protein family is involved in binding to and initiating entry of the invasive merozoite into erythrocytes. An important member of this family is PfRh5. Using ion-exchange chromatography, immunoprecipitation and mass spectroscopy, we have identified a novel cysteine-rich protein we have called P. falciparum Rh5 interacting protein (PfRipr) (PFC1045c), which forms a complex with PfRh5 in merozoites. Mature PfRipr has a molecular weight of 123 kDa with 10 epidermal growth factor-like domains and 87 cysteine residues distributed along the protein. In mature schizont stages this protein is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is shed into the culture supernatant. Antibodies to PfRipr1 potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process

    Tuneable hybrid hydrogels via complementary self-assembly of a bioactive peptide with a robust polysaccharide

    No full text
    Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV"and "RGD"designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture. © 2021 American Chemical Society

    <i>Momordica cochinchinensis</i> (Gấc) Seed Extracts Induce Apoptosis and Necrosis in Melanoma Cells

    No full text
    Momordica cochinchinensis is a herbal medicine used throughout Asia and this study investigated the antimelanoma potentials and molecular mechanisms of M. cochinchinensis seed with emphasis on extraction to optimise bioactivity. Overall, the aqueous extract was superior, with a wider diversity and higher concentration of proteins and peptides that was more cytotoxic to the melanoma cells than other extraction solvents. The IC50 of the aqueous extract on melanoma cells were similar to treatment with current anticancer drugs, vemurafenib and cisplatin. This cytotoxicity was cancer-specific with lower cytotoxic effects on HaCaT epidermal keratinocytes. Cytotoxicity correlated with MAPK signalling pathways leading to apoptosis and necrosis induced by triggering tumour necrosis factor receptor-1 (TNFR1), reducing the expression of nuclear factor kappa B (NF-kB), and suppression of BRAF/MEK. This efficacy of M. cochinchinensis seed extracts on melanoma cells provides a platform for future clinical trials as potent adjunctive therapy for metastatic melanoma

    Determination of protein subcellular localization in apicomplexan parasites

    No full text
    Parasites from the phylum Apicomplexa include causative agents of serious diseases including malaria (Plasmodium spp.) and toxoplasmosis (Toxoplasma gondii). Apicomplexan parasites infect thousands of types of animal cells and send their proteins to an array of compartments within their own cell, as well as exporting proteins into and beyond their host cell. Ascertaining destinations to which individual proteins are delivered allows researchers to better understand parasite biology and to identify potential targets for therapeutic interventions. Our toolkit for establishing subcellular locations of apicomplexan proteins is becoming more extensive and specialized, and here we review developments in this technology

    Additional file 2: Figure S1. of Comparison of cytotoxicity between extracts of Clinacanthus nutans (Burm. f.) Lindau leaves from different locations and the induction of apoptosis by the crude methanol leaf extract in D24 human melanoma cells

    No full text
    Scatter plots showing correlations between cytotoxicity of the crude MeOH leaf extracts of 11 C. nutans samples and different environmental factors, including elevation (a) and annual mean temperature (b). * p ≤ 0.05. (JPG 55 kb
    corecore