11 research outputs found

    Added Alkane Allows Thermal Thinning of Supramolecular Columns by Forming Superlattice-An X-ray and Neutron Study.

    Get PDF
    We report a columnar superlattice formed by blends of dendron-like Li 3,4,5-tris(n-alkoxy)benzoates with n-alkanes. Without the alkane, the wedge-shaped molecules form liquid crystal columns with 3 dendrons in a supramolecular disk. The same structure exists in the blend, but on heating one dendron is expelled from the disks in every third column and is replaced by the alkane. This superlattice of unequal columns is confirmed by complementary X-ray and neutron diffraction studies. Lateral thermal expansion of dendrons normally leads to the expulsion of excess molecules from the column, reducing the column diameter. However, in the already narrow columns of pure Li salt, expulsion of one of only three dendrons in a disk is not viable. The added alkane facilitates the expulsion, as it replaces the missing dendron. Replacing the alkane with a functional compound can potentially lead to active nanoarrays with relatively large periodicity by using only small molecules

    Grain refinement of primary Cu6Sn5 in the Sn-3wt%Ag-5wt%Cu alloy by Ge

    No full text
    Fine grain structure is generally favoured in the alloy system. Here, we demonstrate that the fine intermetallic compounds (IMCs) in Sn-3wt%Ag-5wt%Cu (SAC35) alloy by coupling with different amount of Ge (0–0.15wt%). The effect of Ge addition on the microstructure, elemental distribution, thermal properties, solidification, and corresponding grain refinement mechanisms were studied. The results showed that Cu6Sn5 was explicitly refined in Ge added SAC35 alloys, with a maximum 59% reduction in the size of Cu6Sn5 found in the as-cast bulk SAC35-0.1wt%Ge alloy. Also, the presence of Ge reduced the thickness and grain size at the interfacial IMC layer by 21% and 22%, respectively. Synchrotron micro-XRF results revealed that the Ge preferentially exist in matrix phase. The cooling curve analyses revealed that the solidification time of Ge-coupled is shorter than that of the SAC35 alloy. The undercooling values was found to have decreased with increased Ge addition. The growth restriction factor, Q, was calculated with the aid of Thermo-Calc software, and it was found to have increased in tandem with increasing Ge amounts. The findings suggest the suitability of Ge as a grain refiner for SAC35

    Origin of primary Cu6Sn5 in hypoeutectic solder alloys and a method of suppression to improve mechanical properties

    No full text
    This study examines factor(s) behind the formation of primary CuSn (in the bulk, rather than at the interface) in solder joints, even though solder alloys are hypoeutectic. To understand the contribution from copper (Cu) dissolution from the substrate a Cu-free alloy, tin-3.5 silver (Sn-3.5Ag), was used as a soldered-on copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish substrates. Microstructure observations including in situ synchrotron were used to observe microstructure development real-time and confirm the time and location for nucleation of primary CuSn. High-speed shear tests were performed to determine the solder joint’s strengths. The results confirm that Cu dissolution during soldering is responsible for the formation of primary CuSn. The ENIG finish prevented Cu dissolution and the formation of CuSn resulting in higher solder joint strength for the Sn-3.5Ag/ENIG solder joints. The findings can be used to understand the evolution of primary CuSn and how it can be suppressed to improve joint strength

    The effect of Ni and Bi additions on the solderability of Sn-0.7Cu solder coatings

    No full text
    The present investigation explores the influence of Ni and Bi on the solderability of Sn-0.7Cu solder coatings. The minor addition of 0.05\ua0wt.% Ni into the Sn-0.7Cu solder alloy results in an improvement in the wettability based on dipping tests. The solderability investigation using a globule mode shows the influence of Ni and Bi on the interfacial intermetallic compound (IMC). The addition of Ni to a Sn-0.7Cu solder coating resulted in a (Cu,Ni)Sn interfacial IMC, which enhanced the solderability performance during the globule test. With an increasing amount of Bi in the Sn-0.7Cu-0.05Ni-xBi solder ball, the surface energy of the solder alloy can be reduced, and this improves the solderability. The synchrotron micro-XRF results indicate that Ni is found in a relatively high concentration in the interfacial layer. Additionally, Bi was found to be homogenously distributed in the bulk solder, which improved solderability

    Role of Sintering Temperature in Production of Nepheline Ceramics-Based Geopolymer with Addition of Ultra-High Molecular Weight Polyethylene

    No full text
    The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials

    Effect of Naoh Molar Concentration on Microstructure and Compressive Strength of Dolomite/Fly Ash-Based Geopolymers

    No full text
    Dolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers
    corecore