9 research outputs found

    āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āđāļĨāļ°āļāļēāļĢāļŦāļēāđāļ™āļ§āđ€āļžāļ·āđˆāļ­āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļˆāļēāļāļāļģāļˆāļąāļ”āļ‹āļēāļ āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ āļēāļĒāļŦāļĨāļąāļ‡āļŦāļĄāļ”āļ­āļēāļĒāļļāļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™āļŠāļģāļŦāļĢāļąāļšāļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒAssessment and Approach to Reduce Greenhouse Gas Emissions from End of Life Solar Panel Waste for Thailand

    No full text
    āļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ–āļ·āļ­āđ€āļ›āđ‡āļ™āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļˆāļģāđ€āļ›āđ‡āļ™āđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļžāļĨāļąāļ‡āļ‡āļēāļ™āđāļŠāļ‡āļ­āļēāļ—āļīāļ•āļĒāđŒ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ•āļēāļĄāļŦāļĨāļąāļāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ§āļąāļāļˆāļąāļāļĢāļŠāļĩāļ§āļīāļ•āđ‚āļ”āļĒāļžāļīāļˆāļēāļĢāļ“āļēāļ–āļķāļ‡āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡ āļāļēāļĢāļ„āļąāļ”āđāļĒāļ āđāļĨāļ°āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđ€āļžāļ·āđˆāļ­āđ„āļ”āđ‰āļ„āļ·āļ™āļ§āļąāļŠāļ”āļļāļˆāļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒ āđ€āļĄāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļāļēāļĢāļŠāđˆāļ‡āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļ—āļĩāđˆāļŦāļĄāļ”āļ­āļēāļĒāļļāļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™āđ„āļ›āļāļģāļˆāļąāļ”āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāļāļĩāđˆāļ›āļļāđˆāļ™āđ€āļĢāļĩāļĒāļāļ§āđˆāļēāļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļšāļšāļ—āļąāđˆāļ§āđ„āļ› (Conv.) āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļ›āđ‡āļ™āļ§āļīāļ˜āļĩāļ—āļĩāđˆāļ™āļīāļĒāļĄāđƒāļŠāđ‰āđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™ āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļ 8.6370 kgCO2eq/āđāļœāļ‡ āđ‚āļ”āļĒāđāļšāđˆāļ‡āļ­āļ­āļāđ€āļ›āđ‡āļ™āļŠāļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļ·āļ­āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡ 2.1295 kgCO2eq/āđāļœāļ‡ āđāļĨāļ°āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨ 6.5075 kgCO2eq/āđāļœāļ‡ āđ€āļžāļ·āđˆāļ­āļ‚āļĒāļēāļĒāđāļ™āļ§āļ—āļēāļ‡āļāļģāļˆāļąāļ”āļ‹āļēāļāļœāļđāđ‰āļ§āļīāļˆāļąāļĒāļˆāļķāļ‡āđ„āļ”āđ‰āđ€āļžāļīāđˆāļĄāļŠāļ–āļēāļ™āļāļēāļĢāļ“āđŒāđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™ 4 āļŠāļ–āļēāļ™āļāļēāļĢāļ“āđŒāļ„āļ·āļ­ āļāļēāļĢāļĨāļ”āļ āļēāļĢāļ°āļ™āđ‰āļģāļŦāļ™āļąāļāđƒāļ™āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ‚āļ”āļĒāļ„āļąāļ”āđāļĒāļāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļāđˆāļ­āļ™āļŠāđˆāļ‡āđ„āļ›āļāļģāļˆāļąāļ”āļĒāļąāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāļāļĩāđˆāļ›āļļāđˆāļ™ (Sc1) āļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđ‚āļ”āļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ (Sc2) āļāļēāļĢāđāļĒāļāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāļāđˆāļ­āļ™āļ™āļģāđ„āļ›āļāļģāļˆāļąāļ”āļĒāļąāļ‡āđ‚āļĢāļ‡āļ‡āļēāļ™āļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ (Sc3) āļāļēāļĢāđāļĒāļāļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāđāļĨāļ°āļāļģāļˆāļąāļ”āļ‹āļēāļāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđ‚āļ”āļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ—āļ”āđāļ—āļ™āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļœāļĨāļīāļ•āđ„āļŸāļŸāđ‰āļē (Sc4) āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļ 6.3826 kgCO2eq/āđāļœāļ‡, 8.7892 kgCO2eq/āđāļœāļ‡, 6.0445 kgCO2eq/āđāļœāļ‡ āđāļĨāļ° 4.5811 kgCO2eq/āđāļœāļ‡ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļžāļšāļ§āđˆāļē Sc4 āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļˆāļēāļāļāļēāļĢāļāļģāļˆāļąāļ”āļ‹āļēāļāđāļšāļš Conv. āđ„āļ”āđ‰āļ–āļķāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 46.96 āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāļāļēāļĢāļ§āļēāļ‡āđāļœāļ™āļāļģāļˆāļąāļ”āļ‹āļēāļāđāļœāļ‡āđ‚āļ‹āļĨāļēāļĢāđŒāđ€āļ‹āļĨāļĨāđŒāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđƒāļŦāđ‰āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ„āļ§āļĢāļĄāļĩāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ—āļĩāđˆāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļĒāļīāđˆāļ‡āļ‚āļķāđ‰āļ™Solar panel waste management is an important step for the utilization of solar technology. This research evaluated the greenhouse gas emissions based on the life cycle assessment. The transportation, waste sorting and recycling to recover materials from solar panels have been considered. Greenhouse gas assessment for disposal of used solar panels in Japan is called the conventional disposal (Conv.) because it is commonly used in the moment. The result showed that the total greenhouse gases released from the conventional disposal was 8.6370 kgCO2eq/module which can be divided into two factors, 2.1295 kgCO2eq/module for the transportation and 6.5075 kgCO2eq/module for the recycling process. To expand the approach of waste management, therefore, the researcher increased more four scenarios which were: Sc1: reduction of the transport weight by separating the elements of the solar panels before shipping to Japan, Sc2: disposal of solar wastes in Thailand by the local recycling plant, Sc3: solar panel disassembly before delivering to a recycling facility in Thailand, and Sc4: disassembling and disposing the components in Thailand by the recycling plant that used renewable energy for electricity generation. The greenhouse gas evaluation of four scenarios were 6.3826 kgCO2eq/module, 8.7892 kgCO2eq/module, 6.0445 kgCO2eq/module and 4.5811 kgCO2eq/module, respectively. It was found that Sc4 could reduce greenhouse gas emissions from Conv. by 46.96%. To develop the effective planning for solar panel waste management in Thailand, the analysis of various recycling techniques should be conducted in further research

    Mixed-ligand Mn-II and Cu-II complexes with alternating 2,2 '-bipyrimidine and terephthalate bridges

    No full text
    The novel polymeric complexes catena-poly[[diaquamanganese(II)]-mu-2,2'-bipyrimidine-kappa N-4(1),N-1':N-3,N-3'-[diaquamanganese(II)]-bis(mu-terephthalato-kappa O-2(1):O-4)], [Mn-2(C8H4O4)(2)(C8H6N4)(H2O)(4)](n), (I), and catena-poly[[[aquacopper(II)]-mu-aqua-mu-hydroxido-mu-terephthalato-kappa O-2(1):O-1'-copper(II)-mu-aqua-mu-hydroxido-mu-terephthalato-kappa O-2(1):O-1'-[aquacopper(II)]-mu-2,2'-bipyrimidine-kappa N-4(1),N-1':N-3,N-3'] tetrahydrate], {[Cu-3(C8H4O4)(2)- (OH)(2)(C8H6N4)(H2O)(4)]center dot 4H(2)O}(n), (II), containing bridging 2,2'-bipyrimidine (bpym) ligands coordinated as bis-chelates, have been prepared via a ligand-exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht(2-)) anions were found. In (I), two tpht(2-) anions acting as bis-monodentate ligands bridge the Mn-II centres in a parallel fashion. In (II), the tpht(2-) anions act as endo-bridges and connect two Cu-II centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn-2(tpht)(2)(bpym)(H2O)(4)] entity in (I) and the trinuclear [Cu-3(tpht)(2)(OH)(2)(bpym)(H2O)(4)]center dot 4H(2)O coordination entity in (II) build up one-dimensional polymeric chains along the b axis. In (I), the Mn-II cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central Cu-II cation is also on a special position (site symmetry 1). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face-to-face pi-pi interactions [in (I)], forming three-dimensional metal-organic frameworks. The Mn-II cation in (I) has a trigonally deformed octahedral geometry, whereas the Cu-II cations in (II) are in distorted octahedral environments. The Cu-II polyhedra are inclined relative to each other and share common edges

    Novel Layering of Aqua and Imidazolidinyl Phenolate Bridged Cationic [CuII 2(Ξ-L)(Ξ-H2O) 3H2O]2 Units Over CuINCS Based One-Dimensional Anionic Parallel Chains as Diamagnetic Coordination Framework Host

    No full text
    The hetero valence copper-based metal-organic framework structure {[CuII2(Ξ-L)(Ξ-H2O) 3H2O][CuI- (1,3-NCS)2]}n (2) was constructed from the aqua-bridged [Cu2] complex [Cu2(Ξ-L)(Ξ-H2O)]ClO4 3 1.5H2O (1 3 1.5H2O) of the N4O3 coordinating heptadentate imidazolidinyl phenolate Schiff base ligand, H3L (2-(20hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine). Thiocyanate coordination induced aqua bridge cleavage and reductive extrusion lead to the formation of Cu(NCS)2 - anions as a molecular building block and generation of one-dimensional (1D) anionic chains as an extended coordination framework host in 2 and quantitatively replace all the ClO4 - ions from 1 3 1.5H2O via anion metathesis. Once formed these chains trap the original [Cu2] cationic units in a layer. The copper atoms of 2 are in a distorted square-pyramidal environments around copper ions and are held together by phenolate, imidazolidinyl, and aqua bridges at 3.29 A ° intrametallic CuII 3 3 3 CuII separation. Within the anionic part the presence of two “symmetric” end-to-end thiocyanate bridges with CuI-SCN and CuI-NCS distances of 2.61 A ° (av.) and 1.924 A ° (av.), respectively, results in a CuI 3 3 3 CuI separation of 5.51 A ° (av.) within the linear chain. The cationic part of 2 exhibits a weak ferromagnetic exchange interaction (J/kB=Ãū13.0(5) K or J=Ãū9.0 cm-1 and g=2.25(1)) between the two CuII ions (S=1/2) and implies that the complex possesses an ST=1 spin ground state in good agreement with theMvs H data below 8 K
    corecore